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The object  of t h i s  research has been to  invest igate  numeri- 

ca l ly  the possible existence of closed, invariant regions of 

s t a b i l i t y  fo r  solutions of a par t icu lar  nonlinear d i f f e ren t i a l  equa- 

t ion.  The I l l i a c  II computer a t  the University of I l l i n o i s  has 

been u t i l i zed  for  an accurate study of the s t a b i l i t y  properties of 

solutions of the "Cubic EquatiorP0 This nonautonomous equation 

2 2  has the form d X/dt -k p ( t )  X3 = 0,  where p g t )  is a periodic square- 

wave function of t i m e  with magnitude p, and period 7. This equation 

can be integrated piecewise i n  terms of Jacobian e l l i p t i c  functions, 

and hence is  su i tab le  fo r  a high-speed)digital computer. 

re lying on numerical integrat ion techniques allows us t o  perform 

Not 

many highly accurate computations O V ~ K  thousands of periods of z. 

For fixed values of p and zwe have studied the motions i n  
0 

a global neighborhood of a particular solut ion with period 117 

which has an e l l i p t i c  fixed point on the X-axis, I n i t i a l  explora- 

tory calculations using numerical integrat ion revealed a region 

associated with fixed points of period 557 which apparently did 

not allow any of its in t e r io r  points t o  escape t o  in f in i ty .  This 

F I 



discovery suggested t h a t  w e  make a more careful study of solutions 

associated with the c lus te rs  of multiple points (fixed under multi- 

p l e s  of 112 periods) which surround the  or ig ina l  e l l i p t i c  fixed 

point. 

points t o  in f in i ty .  

sessed charac te r i s t ic  o sc i l l a t ing  hyperbolic invariant curves, whereas 

the solutions with a 55a period did not. 

- outer 332 osc i l l a t ing  invariant  curves intersected the outgoing 112 

osc i l l a t ing  invariant  curves ., 

invariant  curves formed a tangled mesh of self- intersect ions,  

"entanglement" e f fec t ive ly  prevented them from intersect ing the 

552 hyperbolic invariant  curves, 

pf the 557 solutions were %table"'. 

The solutions with 227 and 447 periods quickly carr ied 

The solutions with 112 and 332 periods pos- 

It was found t h a t  the 

However the inner 332 osc i l l a t ing  

This 

Consequently points i n  the domain 

The f ina l  r e s u l t s  c lear ly  show ( to  the accuracy of the 

I l l i ac  I1 computer) the  existence of a closed invariant region, 

associated with fixed points of period 557, around the or ig ina l  

117 e l l i p t i c  fixed point.  

periodic union of the  non-oscillating hyperbolic invariant curves 

associated with the  557 solutions.  It is surrounded by a jumbled 

This region is bounded by the doubly- 

global s t ruc ture  of o sc i l l a t ing  and in te rsec t ing  hyperbolic invari-  

an t  curves belonging to  mappings with lesser mul t ip l ic i t ies .  

in te rsec t ion  property provides the  escape mechanism for  points 

j u s t  outside the invariant region, 

invariant region always map inside t h a t  region, even a f t e r  an 

i n f i n i t e  number of repeated mappings of the phase-space. The 

This 

Points i n i t i a l l y  inside the 

points belonging t o  t h i s  region are  sa id  t o  be 



I f  w e  scale our f l a t  near ly-e l l ip t ica l  t w i s t  mappings up t o  

nearly-circular ones (by scal ing p o l ,  then the  conditions of &mer's 

theorem on invariant  curves for  ce r t a in  t w i s t  mappings apply. How- 
k 

(h ever they are not su f f i c i en t  t o  loca te  the  observed invariant  region 

accurately. (Tes r ing Moser ' s conditions involves as  much work as 

actual ly  searching for  t he  non-oscil lating invariant  curves.) 

the bes t  method a t  present for  obtaining practical knowledge about 

the precise locat ion of invariant  regions of s t a b i l i t y  is  t o  use a 

d i g i t a l  computer. 

Thus 

The most important featur.es of our work should 

be  reproducible on less accurate computers, even u t i l i z i n g  standard 

numerical  in tegrat ion techniques fo r  the equations of motion. Our 

empirical methods would then afford some practical  guidelines for  

a quant i ta t ive  global understanding of the absolute s t a b i l i t y  of 

solut ions of any par t icu lar  nonautonomous d i f f e r e n t i a l  equation. 



iii 

t! 
The author wishes t o  take t h i s  opportunity t o  thank D r .  James H. 

Bar t l e t t ,  now a t  the University of Alabama, for  h i s  constant encourage- L 

ment and i n t e r e s t  as w e l l  as h i s  or ig ina l  suggestion of t h i s  research. 

For, without h i s  Understanding and pa t ien t  guidance t h i s  work would not 

have been completed. I n  addition the author extends h i s  thanks t o  the 

many students who assis ted i n  the work: Mr. Gary Carney; Mr. George Edes; 

M r .  Len Olson; Mr* Tom Schroeder; and especial ly  t o  Mr. Kenneth Lo 

Caldwell for  I l l i ac  programing; Mr. Ani1 K. Raheja for  p lo t t ing  and cal- 

culating; and Mr. James A. Turek for  h i s  excellent draftmanship, Much 

of t h i s  research was supported i n  p a r t  by a grant from the National 

Aeronautics and Space Administration (Grant NsG 280-62) essent ia l  for  

the use of the I l l iac  11 and IBM-7094 computers a t  the University of 

I l l i n o i s .  Final ly  the author wishei t o  dedicate thi8 research to  h i s  

w i f e ,  Gretchen, whose love, understanding, and sac r i f i ce s  catalyzed 

the writ ing of t h i s  work. 



i v  

TABLE OF CONTENTS 

' A. Exploratory mapping<of the phase-plane o...o...o............... 13 

B. Accurate mapping of the phase-plane . O O . . O . O O . . . O . O . . . . . O . O P I O I  21 

C. The mapping T . O . O O . O . ~ . . . . . . . . O . O ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ , * . * ~ ~ ~ ~ . * ~ . . .  27 11 



V 

LIST OF FIGURES 

Figure Page 

b 

1 e Periodic phase-space t ra jec tory  associated with the T1' e l l i p t i c  
fixed point on the X ~ a x i s . . O O O D I . . D . . . . ~ ~ ~ .  ~....O..O.OO..O..e*o.. 

Tilm t w i s t  mappings of the X-axis around the  T1' e l l i p t i c  fixed 

Stroboscopic t r a j e c t o r i e s  of the mapping T55 around the T 
e l l i p t i c  fixed point o.........~..o.O..,..................~.*..*~. 26 

Hyperbolic invariant  curves of the mapping T1' and t h e i r  
r e l a t ions  t o  those of the mapping T33* ., e ., * . .  * .  . e e .  a e 30 

1 7  

2. 
pa in t ,  f o r  m=1,2,3,4, and 5, e o  e o .  e e e * I) e e e * .  * .  . 20 

11 3 .  

4, 
e e e 

5. Hyperbolic invariant  curves of t he  m pping and t h e i r  
r e l a t ions  t o  those of fhe mapping T O ~ . O O O . O l e O I O O D O O O . . ~ . ~ ~ , * .  36 

Hyperbolic invariant  curves of the ma ping T33 and t h e i r  
r e l a t ions  t o  those of the mappings TIE and T55* ~ ~ ~ ~ ~. o .  ~. . . , ~. . . ~ 43 

nd Computer f luctuat ions over the 442- '80scil lation8'  of one 
hyperbolic invariant  curve of the  mapping T550 e ,, . e e * . .  48 

59 

6. 

7. 

8, Deviation from a standard e l l i p s e  of a curve very close t o  the 
union of inner hyperbolic invariant  curves of the mapping 

T55 mappings of i n i t i a l l y  concentric standard ellipses and 
rad ia t ing  s t r a i g h t  l i n e s  around the Tl1 fixed point e e a e e e 62 

Angular T55 mapping increment A9 as  a function of the semi- 
major axis  a. of an i n i t i a l  standard e l l i p s e ,  for  several  
i n i t i a l  angles t ) 0 0 . 0 . . . . 0 . . . . 0 . . 0 0 . . 0 0 . . . 0 . . . . 0 . 0 0 0 0 . 8 . * ~ ~ ~ o . . . ~ ~  66 

Radial T55 mapping increment Ar as  a function of the semi- 
major ax is  a, of an i n i t i a l  standard ellipse, for several 
i n i t i a l  angles ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . . ~ ~ ~ ~ ~ ~ ~ . ~ . . ~ ~ . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ . . ~ ~ ~ ~ e  68 

Numerical e r ro r s  a r i s ing  i n  two methods fo r  the inversion of 
Jacobian e l l i p t i c  functions.. o a 8 0 0 ~ o  . , . e . e m o .  0....0.0~40..E...eI.. 88 

56 

9. 

10, 

11, 

1 2 .  



1 

The s t a b i l i t y  of motion is a concept which is  defined analogously t o  
"$ 

the  s t a b i l i t y  of equilibrium, with which w e  are a l l  familiar.  

small displacements from an equilibrium posi t ion may r e s u l t  i n  a p a r t i c l e  

moving permanently away from t h a t  posi t ion (which is then said t o  be one 

of unstable equilibrium), BO small i n i t i a l  displacements from a periodic 

o r b i t  can r e s u l t  i n  steady motion away from t h a t  o rb i t ,  and the i n i t i a l  

motion is termed unstable, 

J u s t  as  

.l 

The planetary o r b i t s  appear t o  be "stable" s ince they have changed 

very l i t t l e  over several  thousands of years. H Q W ~ V ~ K ,  astronomical evolu- 

t i on  occurs over b i l l i ons  of years,  and it  would be nice t o  know how s t ab le  

the solar  system is during such a t i m e  span, 

t h i s  problem by observing the s t a b i l i t y  properties of charged pa r t i c l e  

t r a j ec to r i e s  i n  accelerators and magnetic bo t t les ,  

involve millions of o r b i t  repe t i t ions  i n  r e l a t ive ly  short  t i m e s ,  so t ha t  

any i n s t a b i l i t i e s  w i l l  show up vividly,  

i n s t a b i l i t i e s  may help i n  control l ing nuclear fusion, so t h a t  precise  

knowledge of '*long-periode@ s t a b i l i t y  is v i t a l o  

an adequate mathematical theory of s t a b i l i t y  of m t i o n  fo r  dynamical 

Evidence may be gained for  

These t r a j ec to r i e s  may 

I n  f ac t  the elimination of plasma 

To a t t a i n  t h i s ,  w e  need 

systems i n  general, and for  s t e l l a r  systems, accelerators,  and s t e l l e r a -  

t o r s  i n  par t icu lar .  

In  general, the  dynamical equations are nonlinear, e i t he r  exp l i c i t l y  

time-dependent (i,e, non-autonomous) or else time-independent. The solu- 

t ions of the equations may be found numerically, but then w e  have t o  examine 

the i r  t o t a l i t y  i n  order to  make conclusions about s t a b i l i t y ,  General 

t r ea t i s e s  on the " s t ab i l i t y  of motion@@ (e,g, the survey by Sansone and 
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2 f  Conti&' or  Bel lman-  with references) l i s t  many d i f f e ren t  de f in i t i ons  of 

"s tabi l i ty" ,  depending pa r t ly  on the approximations which a re  to  be made. 

We s h a l l  begin by b r i e f ly  discussing 
ka 

Let us con- 

c s ider  a set of n coupled f i r s t -order  equations of the motion 

where T is the  period of the  motion. I f  w e  now look a t  some %earby" solu- 

t i on  whose n coordinates X;(t) a t  t i m e  t d i f f e r  from Xi(t) by inf ini tes imal  

perturbations 8Xi(t), w e  can write 

Since t h i s  is a l so  a so lu t ion  of equation (1) by def in i t ion ,  w e  can obtain 

n for the bXi (t) inf  initesfmals namely 

n 

bXj i = 1 g 2 , . o o 8 n  ( 4 )  a 
J j -1 

These l inea r  d i f f e r e n t i a l  equations (with coef f ic ien ts  per iodic  i n  t) 

w i l l  possess solut ions for  the  6Xi of the  form 

k-1 

where Mik is an array of functions of period 'E, and % a r e  n constants known 

as cha rac t e r i s t i c  exponents of the so lu t ion ,  

imaginary, then the perturbations 8X ( t )  themselves w i l l  be per iodic  and 

bounded. 

I f  a l l  the  % are purely 

i 
I f ,  however, some of the % a r e  r e a l  and posi t ive,  then the 
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8Xi(t) w i l l  grow exponentially with t i m e .  

f o r  determining the % i n  general, as  w e l l  as  t h e i r  implications, can be 

found i n  Whittaker- or  Minorsky- This var ia t iona l  approach, due t o  

Poincare'; is a ra ther  universal  one, but is c lear ly  only a f i r s t -order  

approximation t o  the  e f f e c t s  of 

Discussions of the  exact methods 

w 31 4P 

t 

( f i n i t e )  changes i n  a l l  the  

var iables ,  

the f iKSt4 rde r  s t a b i l i t y  of solut ions t o  the r e s t r i c t e d  three-body problem- 

a r e  found i n  the work of Shearing- and Henon- e 

Specif ic  applications of these methods t o  the determination of 

5 /  

64 a /  

The l imi ta t ions  t o  the usefulness of t h i s  f i r s t -order  theory a r e  

apparent, 

separation from the known periodic  so lu t ion ,  w e  can de f in i t e ly  sag (provided, 

of course, tha t  w e  can d i r ec t ly  in tegra te  the var ia t iona l  equations (4)) 

whether the nearby so lu t ion  w i l l  grow i n  s i z e  with increasing t i m e ,  or  

whether i t  w i l l  remain inf in i tes imal ly  'tclose98. 

which a r e  a f i n i t e  dis tance from the per iodic  solut ion? 

As long as we consider solut ions with only an inf in i tes imal  

But what about solut ions 

Clearly the  var ia-  

t iona l  theory is only a loca l  theory, whereas what w e  need is  a global 

study of solut ions of the equations of motion. 

A f i r s t  s t e p  i n  t h i s  d i rec t ion  was made by Liapunos' near the end 

of the nineteenth century. H i s  so-called "second (or d i r e c t )  method'# y ie lds  

conditions for  '%tab i l i t y  i n  the large", without the need t o  in tegra te  the 

of ten  d i f f i c u l t  var ia t iona l  equations. His theory centers around the 

existence of ce r t a in  a lgebraic  functions (Liapunov V functions) of the  n 

var iables ,  which possess propert ies  of def ini teness  of s ign i n  d i f f e ren t  

regions of phase-space, LiapunovDs second theorem s t a t e s  t ha t  i f  there 

e x i s t s  such a d e f i n i t e  function V(Xi) whose Eulerian der iva t ive  ( ieeo  a 

t i m e  der iva t ive  taken along a t ra jec tory)  is e i t h e r  zero o r  of opposite 

s ign t o  V i n  some domain D, then the  d i f f e r e n t i a l  system of equation (1) 

b B 6 
c 
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possesses a stable equilibrium around the  s ingular  point Xi=O. Weakening 

of the  hypotheses produces several  modified theorem for  other 9ypesi i  of 

s t a b i l i t y .  I n  the general ease, howeverp h i s  theorems do not specify any 

method for  determining the function V, nor do they prove i ts  existence.  

I f  such a function can be generated somehow, then it can be used t o  demon- 

s t r a t e  s t a b i l i t y  of motions i n  the Large or  a t  l e a s t  i n  d e f i n i t e  regions. 

A 1  though Liapunov" s theorems have found extensive applications during the 

l a s t  70 years9 they s t i l l  present a number of ana ly t ica l  problems which 

can be as  d i f f i c u l t  as  those of the var ia t iona l  theory. 

t o  tackle  the basie  problem of determining the global pltoperties of solu- 

t ions ,  as  opposed t o  the  s t r i e t l y  local propert ies ,  

The same period of h i s tory  saw the  emergence of a fundamentally 

approach of 

* 

t. 

But they do begin 

d i f f e ren t  point of view about s t a b i l i t y  -- 
H, Poincare- He regarded the d i f f e r e n t i a l  equations of motion as  

defining a transformation T of the phase-space onto i t s e l f ,  Specif ical ly ,  

the in tegra t ion  of the equations of motion takes i n i t i a l  coordinates on 

the manifold and maps them in to  f i n a l  coordinates on the same manifold. 

It is not hard t o  imagine how simple regions of i n i t i a l ,  coordinates can 

become mapped onto q u i t e  complex, d i s tor ted  regions on the  manifold. 

it is a l so  conceivable tha t  some par t icu lar  points on the manifold could 

@91 

n 

Y e t  

be transformed in to  themselves, 8uch points are cal led of 

41 the mapping Tn, 

a s se r t s  t ha t  every continuous transformation of a closed (n-dimensional) 

I n  f a c t ,  Brouwer's remarkable fixed point  theorem- 

d isk  onto i t s e l f  has a t  least one such fixed point,  

The works of Poincarg i n  the f i e l d  of topological approaches to  

s t a b i l i t y  are very extensive,  but w e  need t o  mention here only one of h i s  
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10% las t  theorems the so-called "geometric theorem"-- This theorem, which 

arose i n  connection with per iodic  solut ions of the  r e s t r i c t e d  three-body 

problem, concerns itself with any closed annular r i n g  0 C a 5 r 5 b 

re-plane (a and b a r e  fixed r a d i i ) ,  and asserts tha t  i f  a given t ransfor-  

mation T 

then a t  l e a s t  two points of t h i s  r i ng  w i l l  be fixed under Tn. Those neces- 

sary conditions on Tn are t h a t  it must be one-to-one, continuous, and area- 

* 
i n  the 

i 

n of the annular r i n g  onto i t s e l f  s a t i s f i e s  ce r t a in  conditions,  

preserving, and tha t  i t  advances points on the (inner) c i r c l e  r=a while t s  

regressing points on the (outer) c i r c l e  r=b., 

theorem by Birkhoff=' generalizes t o  the r ing  0 C a 5 r .  

points on the c i r c l e  r=a and regresses a l l  points a: 2 R 4 a by a t  l e a s t  

some angle 9 

i n  the open r i n g  a 5 K < R.) This extremely remarkable geometric theorem 

of Poineare) has set the s tage for  a l l  l a t e r  topological invest igat ions of 

s t a b i l i t y  

(A l a t e r  extension of t h i s  
n 

I f  I" advances 

> 0, then there  w i l l  e x i s t  a t  l e a s t  two fixed points of Tn 1 

n Having i so la ted  a t  l e a s t  two fixed points of the  mapping I" , w e  may 

for  points n log ica l ly  wish to know the general propert ies  of the mapping 36 

i n  any neighborhood of the invariant  points j u s t  found. I f  w e  choose a 

(U,V) coordinate system on the  manifold with the fixed point i n  question 

a t  the o r ig in  U=V=OP then w e  can inves t iga te  transformations Tn of the 

general form 

J 1 V1 = cUo + dVo 4- a o a  

where (U V 1 is the map under Tn of some i n i t i a l  point (UopVo) i n  a l 8  1 

neighborhood surrounding the o r ig in ,  and where a ,b ,c ,  and d a re  r e a l  

constants s a t i s fy ing  ad-bc P 0, 

i 

By studying the roots  pi of the 
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charac te r i s t ic  equation for  the l inear  transformation above (e.g. see 

Minorsky): 

p2 - ( M ) p  9 (ad-be) =: 0 

L w e  f ind there are three basic  types of such l inear  transformations. These 

three cases include 

The symbols h, e, and p designate respectively hyperbolic, e l l i p t i c ,  and 

parabolic mappings. 

mappings, points near the or ig ina l  fixed point (UN116)) move, or  map, 

successively i n t o  other points whose locus is one of the  three basic  conic 

sections e Consequently w e  speak of hyperbolic (saddle) e l l ipt ic  (vortex), 

and parabolic (nodal) fixed points under the general mapping Tn. (A fourth 

type of mapping e x i s t s  i f  pi is  a complex root ;  the resu l t ing  motion is of 

a s p i r a l  nature,  and the  associated fixed point is called a focal point , )  

That is, under repeated applications of one of these 

I n  terms of our i n t u i t i v e  concept of s t a b i l i t y  w e  might guess the 

general s t a b i l i t y  properties of points %ear8" the  or ig ina l  fixed point by 
I 

re ference . to  the  basic type of Tn mapping under which tha t  point is fixed. 

Thus e l l i p t i c  points,  plus s p i r a l  and parabolic points with nearby motions 

directed inwards t o  the  point,  ought t o  be r e l a t ive ly  "stab1eeg8 while a l l  

others ought t o  be basical ly  %nstable88Q For example, the l i nea r  mapping 

i 
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Tn successively maps an i n i t i a l  (neighboring) 

ell ipse whose major and minor axes w i l l  depend on the exact i n i t i a l  

coordinates. 

point along the locus of an e 

c But the Tn transformations discussed above a r e  s t r i c t l y  l i nea r  

mappings. 

l i nea r  mappings Tn0 

o r  i n s t a b i l i t y  of a given fixed point of the mapping Tn w i l l  necessarily 

be of a more complex nature,  

r e t i c a l  and empirical r e s u l t s  of the topological approaches of Poincare 

In  general ,  nonlinear d i f f e r e n t i a l  equations w i l l  possess E- 

Consequently any discussion of the  possible s t a b i l i t y  

Moreover, there  a r e  several  addi t ional  theo- 
/ 

121 and Birkhoff t h a t  complicate the general nonlfnear problem, Birkhoff- 

has ~ D Q V ~ $  

point i n  phase-space there  e x i s t  c lus t e r s  of multiple fixed points ,  

m u l t i p l e  points a r e  Qsed,-under some integer  m u l t i p l e  m of the or ig ina l  

t ha t  inside any neighborhood of a given a l l i p t i c - type  fixed 

These 

fixed point mapping Tn, i,,s, a r e  fixed points of the  mapping Tm (m suc-  

cessive applications l o  As w e  s h a l l  see later, for  any par t icu lar  

value of the integer  multiple 

points ,  and they a l t e  aqound the T"" c lus te r  between e l l i p t i c - type  

and hyperbol ic-type points.  To complicate matters even more, 

Bartlett- has shown, i n  a quant i ta t ive  demonstration of Poincark's 

theory of consequent@" tha t  the invariant  curves issuing from and 

toward a Tn hyperbol&-type fixed point are, i n  general, o sc i l l a to ry  

mn re is an even number 2m of these T 

13 I 

$91 

curves. (By invar 

consequents, o r  ma 

hyperbolic invariant  curves develop area-preserving osc i l l a t ions  of 

t curve w e  m a n  a locus of points a l l  of which are 

nder Tn, of themselves alone.) In  f a c t ,  these 

increasing amplitude as  they approach the next hyperbolic-type point 

beyond the adjacent e l l i p t i c - type  point,, 
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It is t h i s  (denumerable) i n f i n i t y  of c lus te rs  of a l te rna t ing  am" 

fixed points and osc i l l a t ing  hyperbolic invariant  curves which complicate 

the analysis of nonlinear mappings. In  f ac t ,  t h i s  complex behavior 

z suggests the poss ib i l i ty  t ha t  a l l  fixed points could be ult imately "unstable". 

For example, i n  any neighborhood of a given e l l ip t ic - type  fixed point,  no 

matter how small, one could always find regions containing hyperbolic-type 

fixed points of increasing mul t ip l ic i ty  m. 

type points (m of them) could be readi ly  carr ied f a r  away by the osc i l l a t ing  

Points near these Tm hyperbolic- 

invariant  curves issuing from (and coming in to)  the hyperbolic-type points. 

I f  successive mappings of these points under TIw carry them out  t o  i n f i n i t y ,  

then the or ig ina l  e l l ip t ic - type  point would be %nst 

The investigation of various fo rm of area-preserving mappings of 

annuli onto themselves has bean a f r u i t f u l  topological approach ever since 

the pioneering work of P o i n ~ a r g ~  It is t h i s  same technique which forms the 

basis of several recent theorems on invariant curves and regions, published 

independently by Am01 ' d2'and Moseg '  Moser' s theorem is somewhat 

more general, and consequently w e  sha l l  discuss h i s  work, He f i r s t  con- 

s iders  the annular region i n  the re-plane defined by 

O < a l [ r < b  _D 

and the .a 0 

of tha t  annular r ing ,  where the function a s a t i s f i e s  

d d d r o  2 0 

This l a s t  requirement on a@ means tha t  the amount of the angular twisting 
0 

e 
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of the mapping always increases with r a d i a l  dis tance from the o r i g i n  of the 

polar coordinates. 

of Poincare/.) 

simply twist ing them around counter-clockwise through an angle a(r ). 

(Note t h a t  the sense of the t w i s t  i s  opposite t o  t h a t  
.. 

It is c lear  t h a t  t h i s  simple mapping preserves c i r c l e s  by 

'r 0 

Moser next considers a '8small perturbation'* of t h i s  s i m p l e  c i r cu la r  

twist mapping, of the form 

where F and G a r e  assumed t o  be small and of angular period 2n radians,  

then proves tha t  for  any e > 0 ,  no matter how small, the above mapping 

He 

possesses a smooth, closed invariant  curve, lying ins ide  an annular region, 

of the form 

where the  functions p and q a l so  have an angular period of 271 radians and 

possess s continuous (pa r t i a l )  der ivat ives  sa t i s fy ing  

Moser a l so  assumes t h a t  the following conditions hold: 

i )  Every closed curve near a c i r c l e :  

K = f (6) = f (&an) = a constant 

i n t e r sec t s  its mapped (image) curve a t  least twice; 

ii) There e x i s t s  a constant Co > 1 such tha t  
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iii) There e x i s t s  a bO(e,s,C0) and an &(SI such tha t  

F ina l ly  he a s se r t s  t h a t  the mapping induced on the curve of equation (14) 

is  given by 

0; = e@ + a(ro) e (19) 

Moser l a t e r  develops a formula for  R(s)  and ob ta ins ' t he  la rge  value of R=333! 

Thus the existence of only a (large!) f i n i t e  number of partial der ivat ives  

of F,G, and a are necessary ( in  contrast  t o  the theorems of Arnol'd which 

require  i n f i n i t e l y  many der ivat ives  t o  ex i s t ) .  

Moser's theorem has an important bearing on the s t a b i l i t y  of solut ions 

of d i f f e r e n t i a l  equations, 

a r e  m e t ,  then the theorem asse r t s  t ha t  there  e x i s t s  a smooth, closed invari-  

ant  curve of the mapping. 

curve and the i n t e r i o r  region i t  bounds must always be preserved, even a f t e r  

For i f  i t s  necessary conditions for  the  mapping 

This statement i n  turn  means tha t  the invariant  

an i n f i n i t e  number of mappings of the region onto i t s e l f .  

points which l i e  i n i t i a l l y  anywhere inside the invariant  region w i l l  always 

Consequently, 

map i n t o  other points somewhere inside t h i s  region and thus w i l l  be 

absolutely s t a b l e  ( ioeo  for  an i n f i n i t e  t i m e ) .  Points i n i t i a l l y  outs ide 

t h i s  region may map anywhere outside,  i n  par t icu lar  t o  i n f i n i t y ,  so t ha t  

w e  can make no general (absolute) predictions about such points.  

One method of studying Mosesr's contentions (and the general question 

of s t a b i l i t y )  is  t o  pick a simple nonlinear d i f f e r e n t i a l  equation which can 

be integrated i n  some closed form. We can then use a high-speed d i g i t a l  
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computer t o  inves t iga te  i t s  

a high degree of accuracy. 

i n  our research i n  order t o  

per iodic  and "almost-periodic" 

This ar i thmetical  approach has 

avoid the accuracy l imi ta t ions  

solut ions t o  

been adopted 

of ordinary 

numerical in tegra t ion  techniques a e w i l l ,  however, employ the latter 
s 

approach for  ce r t a in  preliminary calculat ions,)  

The non-autonomous (time-dependent) equation chosen, the "Cubic 

equation", a r i s e s  i n  connection with the motion of charged pa r t i c l e s  i n  

accelerators- 

and l a t e r  by BartlettGf using the  I l l i a c  I computer. 

1 6 f  171 It has been studied numerically by Powell and Wright- 

The dimensionless 

form of t h i s  "Cubic: equation" is 

+ p ( t )  x3 = 0 --P dLX 
2 d t  

where p ( t )  i s  here chosen t o  be a per iodic  square-wave function of t i m e ,  

with a constant magnitude p and a fixed period z, t h a t  is o 

This equation can be eas i ly  integrated i n  a piecewise manner ( i o e e  

over each half-period ~ f 2  of the square-wave) t o  y ie ld  piecewise f i r s t  

in tegra ls  of the motion. 

give a piecewise solut ion for  X ( t )  and i ( t)  i n  terms of Jacobian e l l i p t i c  

functions ,, 

the  coordinates 

square-wave. Using these coordinates now as  i n i t i a l  coordinates, w e  can 

These i n  t w n  can then be integrated once more t o  

Given i n i t i a l  phase-space coordinates (Xi ,f,) w e  can thus obtain 

1 a t  the end of the f i r s t  quarter-period of the  1 

calculate  the coordinates (X2$k2) a t  the end of the next half-period of 

motion, and so on i n  s t e p s  of ~ f 2  thereaf te r  u n t i l  w e  des i r e  t o  stop. 

Thus a phase-space t ra jec tory  of period n2 can be constructed, where n is 
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some integer multiple of a @.e. an in tegra l  number of square-wave cycles). 

This t ra jec tory ,  then, corresponds t o  a mapping 'E (7) of the phase-space 

onto i t s e l f ,  

ples.  

n 

6- 

We s h a l l  study the properties of t h i s  mapping and its multi- 

A b r i e f  analysis of the possible solut ions t o  equation (20) together 
& 

with de ta i led  methods for  numerically calculat ing the piecewise t r a j ec to r i e s  

above (i.ee the  mappings T (a ) )  are given i n  the f i r s t  appendix. n 

The object  of t h i s  research w i l l  therefore be to  analyze experimentally 

(i.e. by using computers) the  mathematical contents of Moser's theorem for  

'the above "Cubic equationgte I f  w e  can assure ourselves of extreme precision 

i n  these computer calculations,  then w e  ought t o  be able  to  locate  and 

determine the  precise shape and s i z e  of the  closed invariant  curves and 

regions, i f  they exist. 

then be applicable t o  any nonlinear system of equations, 

p rac t ica l  numerical understanding of the absolute s t a b i l i t y  of solutions 

f o r  any par t icu lar  nonlinear d i f f e ren t i a l  equations can be obtained eas i ly  

and quickly. 

It is hoped t h a t  these experimental methods w i l l  

I f  so, then a 
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I1 e CALCULATIONS 

A. 
67. 

The analysis i n  the f i r s t  appendix shows t h a t  w e  can u t i l i z e  a 
-l 

Q d i g i t a l  computer for  the rapid and accurate calculat ion of any desired solu- 

t i on  of the or ig ina l  equation (20). That is ,  for  any given i n i t i a l  coordi- 

of these solut ions w i l l  be l imited chief ly  by the  capacity of the computer, 

A program ( l i s t ed  for reference i n  the second appendix) has been wr i t ten  

i n  the machine language (NICAP) of the University of I l l i n o i s '  I l l i a c  I1 

computer i n  order t o  obtain maximum (12-place) accuracy. (The I l l i ac  11 

computer u t i l i z e s  52-bit words i n  the form of four quarter-words, and has 

a speed of up to . twice tha t  of the IBMw7094 computer.) 

[It has alBo been convenient t o  write a simpler Fortran program 

(also included i n  the second appendix) fo r  the d i r e c t  numerical integrat ion 

of equation (20) using a modified Runge-Kutta-Gill integrat ion routine.  

This program, run on both the IBM-7094 and the I l l i ac  11, has been highly 

useful for  general exploratory investigations of solutions.  Although the 

calculations made with t h i s  program are limited t o  about 6-place accuracy, 
I 

they a re  helpful i n  ascertaining j u s t  which solutions the highly 

accurate NICAP program. 

short ,  s i m p l e  t o  write, and compatible with IBM computers. 

however, the Fortran program i s  about 3 t o  4 times slower tban the NICAP 

The program has the additional v i r tues  of being 

Time-wise, 

program, i n  s p i t e  of the  l a t t e r  program's length and complexity (1250 N I G H  

inst ruct ions compared with 110 Fortran statements). 

the  NICAP program can calculate about 2200 periods of p( t )  per minute of 

On the average 
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computer t i m e ,  while the Fortran program can compute only about 660 periods 

of p ( t )  per minute.] 
,. 

An exploratory scan of solutions ( in  the phase-plane) was made on 

the  I l l i ac  I computer by Bartlett, who found t h a t  a l l  fixed points i n  the 

phase-plane a re  e i the r  on the two coordinate axes or  else are maps of these 

points- e 

reproduced i n  Table 1 for  reference. 

about 3 decimal places (which is adequate for  i n i t i a l  s tudies) .  

13/ A l ist  of fixed points on the two axes fo r  n=2,3,,..,12 is 

These values a re  accurate only t o  

As n gets  

larger  the corresponding points fixed under Tn(.t) l i e  closer t o  the or ig in  

and closer t o  one another. W e  s h a l l  see tha t  around any of these T"(T) 
. .  

fixed points there  l i e  c lus te rs  of "satel l i te ' '  multiple points fixed under 

the transformation !Em(7), where m is  an integer e 

Knowing the locat ion of the simpler fixed points ,  w e  can proceed 

to  invest igate  some of the properties of t he i r  associated solutions.  

11 Preliminary repeated mappings under T 

r e l a t ive ly  l a rge  neighborhood of the  T1' e l l i p t i c  fixed point on the 

(7) of points i n i t i a l l y  inside a 

+X-axis (a t  about Xi= 1.667) showed tha t  the consequent (mapped) points 

generally re turn  repeatedly t o  the same i n i t i a l  neighborhood. 

t o  i n f i n i t y  o r  wander very f a r  from the i n i t i a l  neighborhood. 

e l l i p t i c  fixed points were s imi la r ly  scanned, but none exhibited such an 

apparent '@stabi l i ty"  of the  repated mappings. 

work w i l l  concern i t s e l f  with a de ta i led  analysis of the  region near the 

TL1 e l l i p t i c  fixed point,  

t h a t  is associated with t h i s  3'' fixed point is shown i n  Figure 1. 

Few escape 

Other Tn 

Thus the remainder of t h i s  

A plo t  of the periodic o r b i t  i n  phase-space 

The 

(22) encircled points mark the end of each half-period a r c  of motion, 

while the T1' fixed point on the +X-axis (the i n i t i a l  conditions f o r  the 

o r b i t )  is  enclosed by a small square. 



15 

Table 1 

Approximate axis locations of some fixed points 

of the mapping T"(r), for n=2,3 ,..., 12. 

n 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

- X-axis 

3 4143 

3 a 1823 

2,387 

2.338 

2.1086 

2 e 058 

1.9106 

1.8506 

1.736 

1,667 

1,5777 

0' 

X-axis - 
9.6012 

0 4591 

0.3775 

0.3579 

0 3088 

0.1639 

0.1545 

0.1464 

0,1259 

0.1021 

0.09339 
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Figure 1. Periodic phase-space trajectory associated 

with the TI1 e l l i p t i c  fixed point on the 

X-axis. 
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The X-axis near the point Xi= 1.667 was mapped for  the mul t ip l e s  

m=1,2,3,4, and 5 of the basic  period nT=llz, and the r e s u l t s  of the Runge- 

Kutta method a re  shown i n  Figure 2 ,  Note the  s t r i k i n g  ''twisted" character 

of  these mappings, a fea ture  t h a t  w i l l  play an increasingly important ro l e .  

In  the f igure,  El marks the T1' fixed point ,  and the (+) superscr ipts  on 

the  letters A,B,C,D, and E ind ica te  the curve is a map of the +X-axis for  

m=1,2,3,4, a d  5 respect ively.  

(rotated) version of the previous one, so t ha t  even by m=3 the p lo ts  become 

Each successive mapping is  a twisted 

i n t r i c a t e l y  twisted around each other .  

then r e t u r n  t o  i n t e r s e c t  the axes again, more of ten  the greater  m is. 

Sections ge t  thrown outward and 

Y e t  a grea t  deal of useful information can be obtained from t h i s  

exploratory plot .  

of our nonlinear system is creat ing two wide "escape avenues" for  points 

F i r s t  of a l l  w e  observe tha t  something i n  the s t ruc tu re  

around the  T1' fixed point. 

0.01) and (1.65,-0.01) and carry the mapped axis  curves f a r  away from 

These begin i n  the neighborhoods of (1.66, 

the fixed point El"  Already w e  have s igns of what w e  would i n t u i t i v e l y  

c a l l  " ins tab i l i ty"  e 

The other pieces 

the various mapped ax is  

E+ and C i n t e r s e c t  the  

mappings respect ively,  

on the -X-axis. Curves 

44 fixed under T88 and T 

+ 

of valuable information a r e  the. in te rsec t ions  of 

curves with the X-axis and with each other .  Curves 
33 +X-axis and reveal fixed points for  the T55 and T 

33 Similarly E and C give fixed points for  TS5 and T 

+ + D and B in t e r sec t  the -X-axis and loca te  points 

respect ively;  the same appl ies  for  D and B i n t e r -  

sec t ing  the  +X-ax i s .  I n  addition, these curves cross each other.  Curve 

A + i n t e r sec t s  I) + and so reveals a point f ixed under T 44a11 = T33. Other 

T33 points arise from the following intersect ions:  A with D, B+ with E', 
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Figure 2, Tilm t w i s t  mappings of the X-axis around 

the T1' e l l i p t i c  fixed point, for 

m=1,2,3,4, and 5 .  
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and B with E. The intersect ions 

fixed under T . . 
88 

of A with E+ and A* with E yield points 

Already w e  see some of the multiple (fixed) point s t ruc ture  of the 

TIf fixed point revealed to  us i n  t h i s  simple scan, So f a r  w e  have the  

approximate coordinates of 6 points fixed under T33, two under T44, two 

under T55,. and 4 under T88. The 6 points fixed under T33= T3n (for n 4 l )  

represent the t o t a l i t y  of T3n points which have been found i n  t h e  c lus te r  

around the Tn fixed poiht. 

fixed points of the mapping T"" i n  a cluster around the Tn fixed point,  

Of these,  m w i l l  be e l l i p t i c  fixed points and m w i l l  be hyperbolic points,  

a l te rna te ly  spaced around the 'En fixed point,  

I n  simple cases w e  can exppct 2m multiple 

B. Accurate mapping of the phase-plane 

A f iner  scan, using the more accurate MICAP program for  the I l l i a c  

55 11, resul ted i n  accurate fixed point values for  the  T33 and T 

These values are l i s t e d  i n  Table 2, along with the r e su l t s  of a later 

determination of the type of point ( i o e e  e or E stand fo r  e l l i p t i c  and 

wppings. 

h o r  H for  hyperbolic-type fixed points), 

(or h)  set for  T33 and 

of the i n i t i a l  point on the X-axis. 

bo l ic  fixed points adjacent t o  the TI1 e l l i p t i c  fixed point on the X-axis 

131 are taken from the work of Bartlett- 

The points belonging tg  an e 

T55 a re  l i s t e d  a s  the successive TI1 transforms 

Approximate values fo r  the two hyper- 

To invest igate  the type of motion f o r  points i n i t i a l l y  i n  a neigh- 

borhood of the basic  Tn fixed point or i ts  T"" multiple points w e  can 

simply have the computer p r i n t  out and p lo t  the repeatedly mapped coordi- 

nates a t  in te rva ls  of n o r  mn periods. We can then draw a smooth curve 

through the  locus of these successively mapped points and call t h i s  a 
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Table 2 

n - 
11 

11 
11 

33 

33 

33 

33 
33 

33 

55 

55 
55 

. 55 

55 

55 

55 

55 

55 

55 

Exact locations and designations of fixed 

points of the  mapping r"", for n=l1 and 

m=l 3 5 

X 

1.666735430 

1 e 6395 

1 e 6395 

1.687355697 

1.653501571 

1.653501570 

1,650033472 

1.673820978 
1.673820976 

1.672374290 

1.661880306 
1.668547852 
1.668547852 

1.661880306 

1,660868636 

1.671135787 

1.665062836 

1,665062836 

1,671135787 

- - i 
0.0 

0 01690 

- 0,81690 

090 

- 3,641919791 x lom3 
4- 3.641919722 x lom3 

4- 2,109859576 x lom3 
- 2 ~09859583 x 

0,o  

0.0 
- 3.l.19288766 x lom4 
4- 5.276790971 x lom4 

- 5,276791001 x 

4- 3.119288870 x lom4 

4- 3.399519824 x lom4 
- 4.802075374 x 
+ 4.802075326 x loe4 
- 3.399519730 x 

0,o  

Des imation 

*1 
*1 
H2 

t u 
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stroboscopic mapping of the i n i t i a l  point. 'Ehis curve w i l l  be approxi- 

mately e l l i p t i c a l  and closed i f  the i n i t i a l  point is "close" t o  an e l l i p t i c  

f ixed point,  I f ,  on t he  other hand, the fixed point is hyperbolic, then 

t h i s  curve w i l l  depart  rapidly from it. 

stroboscopic curve is an invariant  one, since any point on it  w i l l  map in to  

some other point on the same curve (its g8consequentog) under 'E 

t h i s  technique t o  points near the T3' and 'E55 fixed points,  we f ind t h a t  

for m = 3,5 the  Tilm e l l i p t i c  or hyperbolic point..on the +X-axis l ies 

respectively to  the r i g h t  or l e f t  of the or ig ina l  

These r e s u l t s  a r e  l i s t e d  i n  Table 2, 

As w e  move away from t 

In  e i the r  case the resu l t ing  

n 
Applying 

I' e l l i p t i c  fixed point. 

nearly e l l ip t ica l  rn ions close to  an 

e l l i p t i c  fixed point (such as el of the 'E33 mapping), w e  find tha t  many 

of the points sooner o r  l a t e r  jump into r e g i  ni which contain osc i l l a t ing  

hyperbolic invariant curves and are then quickly l o s t  to  i n f i n i t y *  

making a stroboscopic scan of the X-axis, with Qi4 and ri 5 00040, where 

a: is now the  i n i t i a l  rad ia l  distance from the 'El1 e l l i p t i c  fixed point 

E on the  X-axis, w e  f ind t h a t  t h i s  s o r t  of jumping behavior pe r s i s t s  for  

I n  

i 

1 
a l l  e l l i p t i c  regions down t o  about r = 0,0090, 

z5' e l l i p t i c  point e(1 

Now, as w e  approach the 

on the x-axis, the meion becomes approximately 

i - 

cycl ic  every 5 multiples of the base 

P lo t t ing  every f i f t h  point w e  obtain 

motion around the T1' e l l i p t i c  fixed 

_I__r_ 

period (3.1~) of the mappings. 

coun ter - clo ckw is e s trobos cop i e 

point El., The periods f o r  the 'COIII- 

ple t ion  of one stroboscopic revolution increase to i n f i n i t e  values as  w e  

cross the outer invariant  curves o f  the adjacent TS5 hyperbolic points 

Inside these invariant curves the periods decrease to zero when we a r r ive  

a t  the T~~ e l l i p t i c  point e(1 i t s e l f ,  As w e  move t o  the l e f t  of t h i s  
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point,  they quickly ge t  large again, become i n f i n i t e  as w e  cross the inner 

invariant  curves of the adjacent T55 hyperbolic points,  and then s t a r t  

decreasing. 

These approximately closed, e l l i p t i c a l  stroboscopic motions under 

1 T5' continue i n  a clockwise sense now, no matter how close w e  go toward E 

( a t  l e a s t  down t o  the distance ri= 

hyperbolic "leakages" to  i n f i n i t y ,  even though w e  a re  crossing an increas- 

ingly denser set of c lus te rs  of a l te rna t ing  fixed points with mul t ip l ic i t ies  

There seem to  be no fur ther  

greater than 5. 

s t a b i l i t y .  For, once inside the invariant  curves from the hyperbolic 

points,  a t  about xi= 0.005, the endpoints of the T1' t r a j ec to r i e s  always 

remain ins ide  t h i s  region, performing approximately closed, e l l i p t i c a l  

So it seems tha t  w e  have found an invariant region of 

motions about: E A plo t  of these stroboscopic motions for  i n i t i a l  X-axis 1" 
points i n  the  range 0.0002 5 ri  5 0,0090 (for Qi= 0 again) is shown i n  

Figure 3 ,  

separated by f ive  88chamels'8 of local ly  hyperbolic motion under T55 show 

55 The f ive  g8islandsoo o f  loca l ly  e l l i p t i c a l  w t i o n  under T 

up clearly, a s  does the t r ans i t i on  from a counter-clockwise t o  a clockwise 

sense of stroboscopic revolutions,  

point l3 the  periods for  the p lo t ted  stroboscopic revolutions increase 

from 120 to  1040 m u l t i p l e s  of 112 for  the inner clockwise motions; then 

from 1060 to  200 and back to  1060 multiples for  the "islandn8 regions; and 

f ina l ly  from 1140 t o  90 multiples fo r  the outer counter-clockwise motions 

(As w e  move r ad ia l ly  outward from the 

1 

shown 1 

Thus the motion near the T55 cluster is "stable1' while the motion 

near the T33 c lus te r  is "unstable". 

i n  behavior. As w i l l  be seen l a t e r ,  the  invariant  curves from the - 

We need t o  exp la i i  t h i s  difference 

d I 



25 

Figure 3 Stroboscopic trajectories of the mapping 

T55 around the TI1 e l l i p t i c  fixed point, 
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hyperbolic points of T33 have the general o s c i l l a t i o n  property ( f i r s t  

demonstrated by BartlettG'). 

t ions  of the TS5 hyperbolic invariant  curves i n  Figure 3. 

There do not appear t o  be any such osc i l l a -  
* 

These hyperbolic 

invariant  curves instead seem t o  jo in  one another smoothly as  they envelope 

the well-defined e l l i p t i c  "islands". Perhaps, then, i n s t a b i l i t y  goes hand 

i n  hand with these osc i l la t ions ,  while s t a b i l i t y  is a r e s u l t  of the lack 

c 

of such osc i l la t ions .  

11 C. The maDping T 

In  order t o  see how the above apparently s t ab le  inner region coexists 

with the unstable outer regions, l e t  us  study the mappings for  TI1 i n  a 

region around the e l l i p t i c  fixed point E 1 

two adjacent hyperbolic points 5 and H2" The invariant curves issuing from 

one hyperbolic point develop la rger  and larger  o sc i l l a t ions  as  t he i r  overal l  

motion car r ies  them towards the nearest  hyperbolic fixed points,  This 

should hold t rue  for  both the inner and outer invariant  curves, where w e  

define "inner" a s  closer t o  the or ig in  of our & coordinate system, and 

"outer'8 as  fa r ther  away from t h a t  or igin.  In  our case w e  find t h a t  the 

inner invariant curves move from H2 toward H with increasing osc i l l a t ions  

and large enough to  include the 

1 
while the outer invariant curves move from H 1 
hyperbolic invariant  curves for  the mapping T 

t o  % e  (A plo t  of s imilar  

(2) is shown i n  Figure 3 of 1 2  

reference 13) 

To obtain these curves w e  need only pick i n i t i a l  points ra ther  close 

to  5 or H 

near hyperbolic points w e  know t h a t  these points w i l l  move rapidly towards 

the invariant curves and be asymptotic t o  them. The i n i t i a l  points can be  

taken to  be on a segment of the  s t r a i g h t  l i n e  from E 

and then map them repeatedly. From e a r l i e r  discussions of motion 2 

t o  €I2" A t  the end 1 
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of 11 periods the series of successive points w i l l  have been mapped in to  a 

new series of points forming the locus of the f i r s t  mapped curve. 

can be repeated for  as many multiples m as desired,  thus obtaining m mapped 

This 

curves of the or ig ina l  s t r a i g h t  l i ne .  

too small, these m curves w i l l  be d i s j o i n t ,  By choosing the i n i t i a l  in te r -  

val j u s t  long enough, the m mapped curves w i l l  j u s t  overlap each other.  

We c a l l  one such barely overlapping mapped curve %ne f u l l  osci l la t ion8 '  

I f  the range o f  i n i t i a l  r a d i i  i s  

of the invariant  curve, (Actually they w i l l  m i s s  each other very s l i g h t l y  

because two successive points on the i n i t i a l  s t r a igh t  l i n e  a r e  a t  s l i gh t ly  

d i f f e ren t  distances from the adjacent hyperbolic invariant curves.) These 

barely overlapping m curves can then be joined together smoothly t o  give a 

f a i r l y  accurate p lo t  of the outgoing hyperbolic invariant  curves. 

In  our calculations w e  use a sect ion of the  l i n e  between E and H2p 

a t  an angle of 211.85' t o  the +X-axis, with r a d i i  i n  t he  range 0.0300 5 ri 

- < 0.0316, 

(such as  5 x 

f ine r  gr id  with increments of 2 x loo6 i n  rin The r e s u l t s  of these 

mappings a re  plot ted i n  Figure! 4 as curve F, shown issuing from the  point 

H and moving upwards toward M This is the  "inner*@ invariant  curve, as  

1 

I n i t i a l l y  the scan can be  i n  large increments of the ri values 

or lo+ but eventually i t  becomes necessary t o  go t o  a 

2 1" 
it passes to  the l e f t  o f  El ( f e e ,  closer t o  the ,Xi origin)  The outer 

invariant  curve, plot ted as curve G i n  Figure 4, is obtained by using a 

sect ion of the l i n e  between I$ and the point (1,716, OoO), The angle of 

t h i s  l i n e  is 167.54* t o  the  + X - a x i s ,  and the  in te rva l  of i n i t i a l  r a d i i  

covers the range 0.07SO 5 ri 5 0,0780 in increments as small as 2 x loe6- 
Figure 4 also contains the re f lec t ions  i n  the X-axis of curves F and G, 

labeled and F respectively.  From the time-reversal invariance of our 
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Figure 4 .  Hyperbolic invariant curves of the mapping 

TI1 and their relations to  those of the 

mapping T 33 
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or ig ina l  equation w e  see t h a t  these curves are  solutions not only for  the 

motion with t i m e  running backwards, b u t  a l so  for  the reversed motion or ig i -  

nating a t  an i n f i n i t e  negative t i m e  and continuing with t i m e  running 

forwards toward t = O 0  Thus, for  example, curve shows a series of o sc i l l a -  

t ions moving away from 5 and becoming smoother as it approaches and in te r -  

sects H 

osc i l l a t ions  as  it moves away from H 

(as an inner invariant curve). Similarly F smooths out  i t s  

to  H a s  an outer invariant curve. 1 2 
Because of the "wild" osc i l l a t ions  i n  these curves the "forward- 

1 

goingt8 invariant  curves (F and G )  do not jo in  smoothly with t h e i r  own 

ref lec t ions  (F and z) , the  *'forward-comin"' invariant curves. 

they in t e r sec t  one another (F with Fp and G with E) an i n f i n i t e  number of 

times, 

labeled 1 ,2 ,3 , ,  , ,8 when F is on the outside (with respect to  El) of F, 

Instead 

The regions between successive intersect ions of F with F,are 

--- 
and 1,2,3 when F is  on the inside of 

X-axis of the f i r s t  set of areas). 

sections of G with 

(these a re  ref lect ions i n  the 

The regions between successive in te r -  

a re  labeled A,B,C,  and D when G is on the outside of 
- 
G ;  and 

closer  

s- 

B,C,  and 5 when G is on the inside of E. ' By "inside" we now mean 

t o  El 

As the osc i l l a t ions  of the invariant  curve F issuing from H crowd 

while "outside'" means fa r ther  away from El 

2 
i n  towards 

area,  

curves F and 

w i l l  map in to  a l l  of T9 then in to  a l l  of 7, and so on in to  the  inside of 

the hyperbolic invariant  curves, 

longer, thinner o sc i l l a t ion  

hyperbolic invariant  curve which in t e r sec t s  H2 from a di rec t ion  exactly 

they become long and th in  t o  conserve t h e i r  phase-space 

By noting the direct ional  arrows on the various sections of fhe 

i n  Figure 4 w e  can see t h a t  a l l  the points i n  region 7 

But these points i n  f come from a 

(not shown) t h a t  is closer  t o  tha t  incoming 
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opposite t o  the incoming c u r v e z ,  That is to  say,, these points may come 

from regions qu i t e  d i s t an t  from El and ye t  s t i l l  ge t  i n  close t o  El. 

Similarly w e  can see the fate of points within the  "inner'8 region 6. 

w i l l  map successively in to  regions 5,4,3,,2, and 1 and then i n t o  a longer, 

thinner region which is closer  to  the outgoing hyperbolic invariant  curve 

through J$ ( i e e e  in to  a region which i s  a s i m p l e  r e f l ec t ion  of region 'ij' 

above, t he  "antecedent" of region T) ., 

They 

Thus these points i n i t i a l l y  within 

an inside region w i l l  soon escape to  regions qu i t e  d i s t an t  from the i r  

o r ig ina l  region. 

curves around the 

10 curves of the T 

between these two 

13/ In  f a c t ,  as  B a r t l e t t  has shown-- these osc i l l a t ing  

TI1 fixed point E w i l l  i n t e r sec t  s imilar  invariant  

mapping, so tha t  some of the points i n  the region 

sets of in te rsec t ing  curves can be carr ied even fur ther  

1 

outward,eventually reaching i n f i n i t y ,  The time-reversed motions w i l l  

1" analogously bring points i n  from i n f i n i t y  t o  a region close t o  E 

This same discussion applies t o  the regions formed by the intersec- 

t ions of curves G and Fe Thus points from i n f i n i t y  can move in to  region 

D and then map in to  C,B,A (not shown), and so on in to  the inside of the 
- --- 

invariant  curves, Similarly,  inside points within region A (or its 

unplotted antecedents) w i l l  map successively in to  regions B , C , D  and then 

quickly move out d i r ec t ly  t o  in te rsec t  the T1° hyperbolic o sc i l l a t ions  

This is easy t o  v isua l ize  because region D l ies outs ide tha t  incoming 

hyperbolic invariant  curve t o  H which forms an outer bound t o  the 

(incoming) osc i l l a t ions  of curveF.  This shows indi rec t ly  t h a t  the out- 

going w e i l l a t i o n s  of curve B a l so  reach i n f i n i t y  v i a  intersect ions with 

TIO osc i l la t ions .  

from the same d i s t an t  regions reached by curve F. 

2 

To see why, consider the re f lec ted  curve coming i n  

Points inside 7 w i l l  
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-T- 

map in to  2 , 3 ,  and so on. But not ice  thaX 7 in te rsec ts  region A (as Twill 
so t h a t  points i n  the mutual in te rsec t ion  of regions 7 and A 

w i l l  map in to  B, then C,D,  and so on out  d i reh t ly  t o  the TIo osc i l l a t ions .  
* 

- This may sound l i k e  a tautology, but nonetheless the observed f ac t s  a re  

t h a t  points & escape from inner regions around B t o  i n f in i ty .  l 
We now have a mechanism whereby points may escape t o  i n f i n i t y  even 

Going back t o  Figure 4 when re l a t ive ly  close t o  an e l l i p t i c  fixed point. 

w e  see tha t  the inverse (time-reversed) maps of region 2 (i,e, regions 3 , 4 ,  

5 , 6 ' # * * . )  should eventually f i l l  a grea t  deal of the space inside the inner 
( >  

and outer invariant  curves because of t h e i r  property of preserving phase- 

space areas. 

backward i n  t i m e  or 

I n  pr inciple  w e  should be able  to keep mapping region 2 

forward i n  time, which i n  real i ty  is how w e  actual ly  

make the maps (it is more co~ven ien t  here t o  plo$ the i r  re f lec t ions) .  Then 

i n  the l i m i t  perhaps w e  would end up with s 

mapped regions which would coincide with some invariant  inner region of 

of t he  successively 

s t a b i l i t y  ., 

Unfortunately w e  cannot do t h i s  i n  practice, fo r  the mapped regions 

ge t  progressively thinner and more convoluted. Region 5 is the l a s t  

r e l a t ive ly  complete region hshmn; under a time-reversed (inverse) mapping 

of TI1 the  sect ion of region 5 lying inside region F g e t s  18squir&d81 out 

t o  r e g i o n 5 ,  the a n t e c e ~ e n t  of Fp and only the  t i p  of the mapped region 

6 re-enters the inside of the invariant  curves. For the next few inverse 

maps w e  can only plot  very small pieces of the mapped regions such as 

regions 7 and 8 i n  Figure 4 ,  

j u s t  a shor t  segment of the inside portion of region 6 i n  the neighbor- 

These small 3nhairp%n'' regions correspond t o  

hood of the bump near the number &! 

some other approach i n  order t o  continue the investigation, 

W e  w i l l  therefore have t o  r e so r t  t o  
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33 D. The mapping T 

Since a knowledge of the osc i l l a t ing  invariant curves for  TI1 has 

helped us t o  explain the escape mechanism, l e t  us next find these curves 

for  T ,, 
33 (Referring t o  Figures 4 and 2 w e  note tha t  the TI1 osc i l la t ions  

44 already discussed have penetrated closer t o  El than the cluster  of T 

points,  so w e  may bypass them and instead study the next cluster of points 

closer t o  El.) 

angle of 171,14' t o  the X-axis, and scan the l i n e  segment with i n i t i a l  

r a d i i  i n  the range 0,0127 5 rf 5 0.0135 using increments of about 5 x lom6* 
Successive mappings then yield the hyperbolic invariant curves for T 

For t h i s  purpose w e  draw the l i n e  between el and h i  a t  an 

33 

moves 

curve 

231% invariant curve issuing from h develops osc i l la t ions  as i t  1 

toward h and is pa r t i a l ly  plotted as curve 2 i n  Figure 5, 2O 

2 is  not an inner invariant curve with respect t o  e 

This 

( i .e .  is  closer 1 

1" t o  our E or ig in  than is e ) $  with i ts  motion counter-clockwise about e 1 1 
On the other hand the TI1 invariant curve -from H is  an outer invariant 1 
curve with respect t o  Z ( i o e *  is far ther  from the  .X--k or ig in  than is E ), 1 1 

1" with clockwise motion about E 

By get t ing computer printouts of every 1 1 ~  periods w e  can eas i ly  

obtain the TI1 and T22 maps of curve 2 by p lo t t ing  the points for 

t = 1 1 ~ , 4 4 ~ , 7 7 ~ ,  ., and t = 2 2 ~ , 5 5 ~ , 8 8 ~ ,  e (since curve 2 comes from points 

a t  t P 0 , 3 3 a , 6 6 ~ , ~ . , ) ,  The TI1 transform of curve 2 is plotted as curve 3, 

while the T22 transform of curve 2 is  shown as the more detai led curve 1. 

These curves and the i r  mirror re f lec t ions  i n  the X - a x i s  (labeled 1,2,  and 
-- 

- 
3) are  - a l l  the "inner!* P T33 hyperbolic invariant curves ( f ee .  they l i e  

closer t o  E than elPe2$ or e 1 3 and so we designate them as "inner" with 

respect t o  E ). To obtain the 880uter8s invariant curves (again outer with 1 
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Figure 5 .  Hyperbolic invariant curves of the mapping 

T33 and their relations to those of the 

mapping T550 
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respect t o  E as  they extend f a r the r  from E than or e3)# the 1' 1 

eas i e s t  method is to  pick several  points along a shor t  segment of the 

"inner" outgoing curve 1 which is very close t o  the  T33 hyperbolic point. 

h3., 
w e  can then map 

points on t h i s  new extended s t ra ight - l ine  segment of the  "outer" outgoing 

Extending t h i s  shor t  segment of curve 1 through h 3*  

invariant  curve, The r e s u l t s  are p a r t i a l l y  plotted as curve 6 i n  Figure 5. 

The T1' and T22 maps of t h i s  invariant curve a re  plot ted as curves 4 and 

5 respectively.  

curves a re  plot ted as curves 4,5, and y 0  and complete the picture  for  a l l  

the T33 tBouter" invariant  curves (about E ). 

The re f lec t ions  of these 3 t80uter8a outgoing invariant  
-- 

___._ 

P 1 
We sha l l  discuss these in te rsec t ing  osc i l l a t ing  invariant curves by 

comparing them to  the  pictUKe for the  T mapping. Looking a t  the in te r -  

sections of curves 1 and w e  can predict  tha t  points i n i t i a l l y  between 

the invariant curves i n  region A w i l l  map successively in to  region B,C, 

11 

D,E,F,G,... QutSi.de the  invariant  curves along oubgoing invariant curve 4 ,  

Similarly ex ter ior  points i n  region N w i l l  map i n t o  regions O,P,Q,R,S,.,, 

and become in t e r io r  points,  The same phenomena occur fo r  the intersec-  

t ions of curves 2 and 'z or  3 and 'io 
points i n  region M (near the incoming invariant curve 

points i n  region H v i a  the regions L,K,J, and I, 

For example, for  the former, ex te r ior  

map in to  in t e r io r  

In t e r io r  points i n  

region Y become exter ior  points i n  region T v ia  regions X,W,V, and U. 

Here w e  a re  again using 88interiorv'  t o  mean closer t o  E 

t o  mean f a r the r  away from E 

and "exterior" l P  

Thus the t e r m  '8exterior" here would be 1' 
o r  e ) i f  w e  were invest i -  l"2* 3 called " inter ior"  ( to  the regions around e 

gating the s t a b i l i t y  of else2, or  e ra ther  than El,, (In e f f ec t  w e  have 3 
already investigated e 

close t o  i t  eventually.) 

by observing t h a t  the T1' o sc i l l a t ions  reach i n  1 
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But now there  are additional eomplications. Not only, for  example, 

do curves 2 and intersect one another, but t he i r  (inner) regions of 

mutual in te rsec t ion  are themselves intersected by curves T and 1 (issuing 

to and from the  nearby T33 hyperbolic point h )! 

osc i l l a t ions  the nearest  hyperbolic points t o  H1 and H2 are  a good distance 

away along the cluster of 22 a l te rna t ing  TI1 fixed points surrounding the 

11 In  the  case of the  T 
3 

Xk origin.  For T33 the nearest hyperbolic point t o  hl and hp is j u s t  the 

equivalent s a t e l l i t e  multiple point h3+ 

sect ion of neighboring inner osc i l la t ions  s imilar ly  occurs when curves 2 

and 7 intersect the regions bounded by curves 3 and 11, or  when curves 3 

This same pa t te rn  of mutual in te r -  
t 

c 
and '2 intersect the regions bounded by eurves 1 and T o  

There a re  several  important Consequences of t h i s  

property of the  inner o sc i l l a t ions ,  One is  t h a t  points 

regions (bounded by the outer invariant  eutves) can get  

< 
mutual in te rsec t ion  

from the 3 outer 

in to  the inner 

region, and v ice  versa. Consequently points from the  outer region sur- 

rounding e 

curve 5) and then pass out t o  the outer region surrounding e 

for  example, can reach the imer region around El (via 3*  

(via curve 1 

3 2) .  These points might eventually reach the region of e or  even e 2 '  

again by the same device, A second r e s u l t  is t h a t  the areas of the outer 

o sc i l l a t ions  are considerably smaller ( in  proportion t o  the t o t a l  "outer" 

area) than those for  the T mapping. It thus seem unlikely tha t  these 11 

osc i l l a t ions  w i l l  f i l l  up the space around, for  example, 

t ha t  the TI1 osc i l l a t ions  did around $1" But these outer o sc i l l a t ions  have 

the same area as  the inner o sc i l l a t ions ,  and so we a re  led t o  suspect 

t o  the extent  el 

empirically t h a t  the inner region around E w i l l  be r e l a t ive ly  f ree  of 

inner o sc i l l a t ions  from the  T33 mapping crowding i n  toward E (as they 

did for  t he  T maps), 

1 

1 
11 
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A th i rd  consequence i s  t h a t  some points w i l l  move around the periphery 

of the inner region for  several  e n t i r e  stroboscopic revolutions before 

escaping t o  the outer regions. 

area Q of curve 1. 

mathematical in te rsec t ion  of regions Q and 2 w i l l  map in to  the  transforms of 

t h i s  area,  i .e. the regions R n  Y, S o  X, and so on. But s ince these points 

l i e  inside region X9 they w i l l  map subsequently in to  regions W,V,U,T,  and 

so on in to  the outer regions. 

t i p  of region Q but 

points i n  the inner t i p  of B,S,  and so on, 

sect W, so t h a t  the t i p  of the TI1 map of S (cal l  i t  S t )  w i l l  not: i n t e r sec t  

region V ,  

TI1 map of the region S n X, since X transforms in to  W,) 

To see t h i s  l e t  us consider points inside 

Those points inside the rectangular area which is  the 

But l e t  us now consider points inside the 

These w i l l  map i n t o  corresponding inside Q f i  2, 

But the t i p  of S does not in te r -  

(However a portion of S o  w i l l  in te rsec t  region W, namely the 

The t i p  of each 

successive map of S' w i l l  move towards h 

regions U or T (which a re  transforms of V), and thus w i l l  remain on the 

inside.  

regions I,HOOO. because these a re  transforms of regions LpKBJB.60 which i n  

turn were not intersected by region S or i t s  antecedents, (These calcula- 

i n  t h i s  fashion, not in te rsec t ing  2 

By the same token the t i p  w i l l  not i n t e r sec t  any of the inner 

t ions were i n  f a c t  carr ied out ,  but a re  not shown i n  Figure 5 because of 

the d i f f i c u l t y  of get t ing enough mapped points fo r  a continuous curve.) 

So the successively mapped t i p  w i l l  t r ave l  gn toward h2 on the 

inside,  para l le l ing  the inner o sc i l l a t ions  of curve 2 ,  

the  mapped t i p s  enter  the domain of t i g h t  o sc i l l a t ions  of curve? as it 

Once c lose . to  h2, 

moves l e f t  towards h Now there  are several a l te rna t ives .  Since the 

t i p  of S' (too long and th in  to  be shown) extends below the X-axis a t  an 

3' 

angle # 90°, t h i s  t i p  of S o  w i l l  i n t e r sec t  i t s  own mirror image i n  the 

X-axis, F' (which is  ju s t  the same inner o sc i l l a t ion  of c u r v e T  as  S 8  
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is  of curve 11, Now Ifo is  the antecedent of 8, which i n  turn maps succes- 

s ive ly  in to  regions R , Q ,  ,O,N, and so on t o  the outer region. Thus i f  our  

mapped points i n  the t i p  of So l i e  inside the region defined by S g  /? 5' 

-e--- 

L 

they w i l l  eventually go t o  the  outer region along outgoing invariant  curve 

6. 

w i l l  move from h2 t o  h on the  inside,  pa ra l l e~ img  curve T but not in te r -  

sect ing i t ,  So these points w i l l  then move around t o  the neighborhood of 

h 

processes w i l l  take place as above, 

But i f  they s t i l l  19e i n  the t i p  of 6' and 

3 

inside Son T o 9  they 

and i n t o  the  influence of curve 7. There the same a l te rna t ives  and 3 
Thus w e  ean see t h a t  some points or ig i -  

nal ly  inside the region Q can move all the  way around the inside periphery 

of the invariant  cusves, while others  w i l l  gradually leak out near h2 or 

h (or hl, h2' o r  h on the next revolution, etc,) ,  Again because of 3 3 

the  great  s t re tch ing  and twisting of each suceessive map of the  inner os- 

c i l l a t ions ,  it is impractical t o  determine exactly which points ( in  a 

given i n i t i a l  region l i k e  Q) leak out and when, and which points c i rcu la te  

around the  inside periphery and for  how long, I n  pr inciple  it can be done. 

But our main concern is  with the vas t  majority of i n t e r io r  points 

t ha t  eventually leak to  the outer regions around eloe2, or  e3" 

gate t h i s  let  us study both the T33 and the TI1 mappings simultaneously, 

To invest i -  

Referring back to  Figure 4, the curves labeled K,L, and M a re  the 3 inner 

invariant  curves of 

t ive ly .  

3 outer invariant  curves of T33, p a r t i a l l y  plot ted i n  Figure 5 as  curves 

plotted i n  Figure 5 as  curves 1,2, and 3 respec- 

The curves P,R,  and S i n  Figure 4 a re  more complete p lo t s  of the 

4,5, and 6 respectively.  

which do escape to  the outer regions do so by moving outward with the 

(outer) o sc i l l a t ions  of cu&es 1,2, and 3, t h a t  is, along the general 

d i rec t ion  of the outer invariant  curves 4,5, and 6 respectively.  

W e  recall from Figure 5 t h a t  the in t e r io r  points 

Looking 
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a t  Figure 4 w e  see the connecting l i nk  t 

curves P,R, and S @,e, curves 4,5, and 6) intersect 
L .- 

the  outer invariant  

the  time-reversed 

osc i l l a t ions  of the TAL mapping! 

which escape (via curves 2 and 5 s f  Figure 5) along outer invariant curve 

R i n  Figure 4 w i l l  quickly in t e r sec t  region 7 of the In  one 

Thus, i n  par t icu lar ,  i n t e r io r  points 

l1 mapping. 

11 more map of T33 (three more under T ) these points w i l l  be . inside region 

4, and w i l l  then move successively under TI1 through regions 3,2,1 t o  

i n f i n i t y ,  The same applies t o  points moving out  along invariant curve 6 

t o  in te rsec t  region 6 ,  OK those moving out along invariant  C U K V ~  P t o  

i n t e r sec t  region 8,  (Note the  double in te rsec t ion  of R with 4, correspond- 

ing t o  s imilar  double intersect ions of S with 6 and B with 5.)  

11 A more detai led plot  of the relat ionship between the T33 and T 
33 mappings is  shown i n  Figure 6. Curve Z, is one of the osc i l l a t ing  T 

-- 
inner invariant  curves (plot  ed i n  Figure 5 as curve a ) ,  rves  P , R ,  and 

S are  incoming outer invariant  curves (labeled 4,5, and 7; i n  Figure 5) 
- -- 

which a r e  simply re f lec t ions  of the outgoing outer invariant  curves P,R, 

and S of Figure 4, e d i rec t iona l  arrows indicate  the  sense of the motion 
-- - 

under Also plot ted ate the 4,5, ..., 14 of portions 
- 

of the time-reversed %I1 osc i l l a t ions  previously discussed 

7 and 5 are  re f lec t ions  of regions 7 and 8 &n Figure 4, 

For example', 
- 

Since these are 

re f lee t ions  of time-reversed mappings themselves (for which 8 maps i n t o  7 

and so on as  t i m e  goes forward), then the order of the  e mappings is clear ly  

4,5,q..146 (In f a c t ,  these a re  the forward-going mappings obtained 

for  'El', and the regions plot ted as 1,2,3,a.,88 i n  Figure 4 a re  i n  r e a l i t y  

- 

themselves the mirror re f lec t ions  of these mappings.) The p lo t  

shows vividly how the inner T1' o sc i l l a t ions  wrap themselves around the T 33 
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Figure 6 .  Hyperbolic invariant curves of the mapping 

T33 and their relations to those of the 

55 mappings T" and T 

c 
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e l l i p t i c  fixed points i n  cycles of 3 (e,g. note the s imi la r i ty  and proximity 

of regions 5,8,11, and x a s  they wrap around e 2 ) .  

--.-..--.- the l i m i t  a s  t -.( a these TI1 osci l la t ion;  crowd i n  along P,W, and $ t o  the  

invariant curves of the T33 mapping (curves 1-6 i n  Figure 5 ,  or curves K ,  

L,M,P,B, and S i n  Figure 4). Final ly ,  the p lo t  c lear ly  shows the 3 channels 

--- 
It a l so  shows t h a t  a 

h u- 

(along invariant  curves P,R,  and S) through which points can escape from 

the  T33 mapping t o  the TI1 mapping. 

We therefore can understand the complete mechanisms for the  escape 

of points from inside the T33 hyperbolic invariant  curves out to in f in i ty .  

The f i r s t  l i n k  i n  the chain s f  mechanism is  the in te rsec t ion  of the hyper- 

11 bol ic  invariant  curves of the T33 and T mappings. The subsequent l inks  

are the intersect ions of the  TI1 mapping with the mapping of T l o p  t h a t  of 

TIo  with T 9 1 and so on out t o  T and in f in i ty .  The key word is  intersect ion.  

E. 

We can now ask if the same mechanism allows escape from inside the 

T55 hyperbolic invariant curves e 

seemed to  show smooth (non-oscillatory) behavior for  T 

indication t h a t  t h i s  behavior does C B C ~ U F  has already been noted: 

Our or ig ina l  stroboscopic calculations 

55 The f i r s t  strong 

the - 

apparent i nab i l i t y  of t he  T33 hyperbolic o sc i l l a t ions  to  f i l l  up the region 

inside the 'E33 hyperbolic invariant  curves and around El (as do the T 

curves), 

not come close to  the cluster of 10 fixed points of the T 

instead s t r e t c h  out thinner and thinner along the inside periphery of t h e i r  

11 

Apparently the inner o sc i l l a t ions  of the  T33 invariant  curves do 

55 mapping, but 

mutual outer boundary, f a r  away from the T55 invariant  curves 

But to  be posi t ive of t h i s  apparent non-intersection of the T33 and 

11 T5' curves ( ju s t  as fo r  the T curves, w e  a re  here l imited i n  practice 
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from mapping very many osc i l l a t ions  of the 

study the T55 invariant  curves t o  a high degree of accuracy, The simplest 

approach is to  study the inner invariant  curve issuing from the hyper- 

bo l ic  fixed point on the X-axis (h(4) i n  Table 23, analogous to curve 1 i n  

Figure 5. The f i r s t  s t e p  is to  choose i n i t i a l  points on the X-axis very 

close to  tha t  hyperbolic fixed point as  the or ig in  of a polar coordinate 

system (with r 

the i r  subsequent motions under repeated mappings of TSse 

rapidly approach the outgoing hyperbolic curve, which is i t s e l f  asymptotic 

curves i t  is necessary to  

lom6 and ei= 01, We can then make a StrobosCOpic p lo t  of 

These points w i l l  

i -  

to  a short  s t ra ight - l ine  

asymptote makes with the 

l i n e  for  many successive 

I n  our par t icu lar  

with the X-axis, and the  

segment through h 4). 

X-axis, w e  can then map a segment of t h i s  rad ia l  

applications of T 

case the asymptote makes an angle of about 15.9* 

range of i n i t i a l  r a d i i  used is 7.00 x 5 ri" 

Knowing the angle t h i s  

55 

- < 8,15 x lom7 with increments as small as  2 x lOWge 

useful t o  p r i n t  out  our e ordinates every 11 periods, so t h a t  we can p lo t  

the invariant  curve issuing from the or ig ina l  hyperbolic point h(4) E 

from any of the other 4 hyperbolic points whish a re  transforms of it  (see 

Once again i t  is  

Table 2) .  I n  par t icu lar  the choice of the  invariant  curve issuing from 

h(3) is  convenient because i ts  osc i l l a t ions  ( i f  they e x i s t )  would crowd- 

in to  the asymptote to  h(4) which has already been determined above. 

The r e s u l t s  of these calculatiens d i f f e r  s t r ik ingly  from those f o r  

the TI1 or T33 invariant  curves. F i r s t  of a l l  there  is a pronounced 

increase i n  the stroboscopic period of the  motion, 

TI1 OK T33 invariant  curves cover most of the distance between a l t e rna te  

Whexeas points on the 

hyperbolic points i n  4 or 6 multiples of the basic  mapping (11%' or 3371, 



46 

points on the T55 invariant  curves require  wre than 100 multiples of the 

basic  mapping of 557 periods. Secondly, as  points i n  the or ig ina l  rad ia l  

segment near h(3) slowly approach h(4), they do develop a small i r regular  

"scatter", undoubtedly due t o  the accumulation of truncation and inversion 

e r rors  a f t e r  so many successive mappings by the computer, 

maps under T5' correspond to  5500 periods of 2, or 11,000 half-period 

[Note t h a t  100 

calculations.  Now each of these calculations involves 9 or  10 computa- 

t ional  s t e p s  such as basic  ar i thmetic  operations, square roots ,  and e l l i p t i c  

function interpolat ions and inversions. These latter computations i n  turn 

involve separate subprograms with many calculat ional  s t e p s  themselves (on 

the  order of 10 to  loo), 
10 or 10 arithmetic operations! If the  computer truncation e r ror  is 

i n  the th i r teen th  decimal place (as i t  is  on the I l l i a c  II computer), then 

t h i s  e r ro r  might accumulate constructively for  10 

Thus each f ina l  plot ted point may require some 

6 7 

6 operations or  more and 

hence show up i n  even the seventh decimal place. In  our calculations the 

sca t t e r  shows up i n  the  eighth decimal place, en t i r e ly  consistent with the 

predictable e r ro r s  .] 

However, there  is no tendency of the  T55 invariant  curves t o  develop 

any regular pat tern of o sc i l l a t ions  analogous to  the TI1 or 7?3 invariant  

curves. 

successive application of the  TI1 mapping t o  - each of 46 points on the  

or iginal  r ad ia l  segment through h ( 4 )  

ri 5 8,15 x lom7) .  These c i rc led  points a r e  the r e su l t s  using an e l l i p t i c  

function inversion-routine e r ro r  of E = 10 

squares are the r e s u l t s  f o r  E = 10pllo 

quadratic,  least-squares computer f i t  of the 46 c i rc led  points for  

The 46 circled points i n  Figure 7 are  r e su l t s  of the 4 4 2 z  

(with Bi= 15.9' and 7-00 x - < 

-12 , while those points inside 

The smooth continuous curve is  a 
I 
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nd Computer fluctuations over the 442- Figure 7 .  

"oscil lation" of  one hyperbolic 

invariant curve of the mapping T 55 
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-1 2 E = 10 (the best  possible accuracy for  the inversion routines).  This 

p lo t  c lear ly  shows the nature and magnitude of the  random scatter of mapped 

points. Also, t h i s  mapped sect ion does indeed correspond t o  a " fu l l  period 

of an osci l la t ion" of the T55 invariant  curve. 

point i n  the lower-right corner of Figure 7 ,  which i s  a map of the point 

with ri= 7.00 x loo7, transforms under T55 in to  a point lying below and t o  

the  r igh t  of the l a s t  c i rc led point i n  the upper-left comer of the p l o t ,  

a map of the  point with ri= 8,15 x loe7* That i s ,  the stroboscopic mapping 

of the or ig ina l  rad ia l  segment a t  the end of the 447- successive applica- 

t i o n  of T1' overlaps the 442- mapping of the same or ig ina l  r ad ia l  segment, 

This overlapping of the ends of the mapped segment with the next T55 map 

of t h a t  segment is  what w e  mean by a " fu l l  period of one osc i l l l a t ion"  of 

the T55 invariant curve 

For, the f i r s t  c i rc led  

t h  

nd 

55 The most convincing contrast  between the behavior of t h i s  T 

invariant curve and tha t  of the "611 or T33 invariant  curves is  the phase- 

space area occupied by any one osc i l l a t ion  of the  mapping. Using Figures 

4 and 5 w e  can measure the phase-space area enclosed by one of the  T1' or 

T33 osc i l l a t ions ,  for example, region 3 i n  Figure 4 and region E i n  Figure 

5. For the randomly scat tered points of the  T55 invariant  curve i n  Figure 

7 w e  can simply connect a l l  points i n  a piecewise (discontinuous) fashion 

end then measure the area of the la rges t  areal  f luctuation. The r e s u l t s  

a r e  

1.4 x :@? uni t s )  

T": All = 5.65 x (Xk uni t s )  

T33: A33 

N 

J N ( T55: A55 = 8 x @ uni t s )  e 
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Now the r a t i o  (A /A 

(A33/A55) we might expect A55 

is t h a t  A55 is 10 

almost, i f  not exact ly ,  zero, In  f a c t ,  reca l l ing  tha t  computer truncation 

e r ro r s  may build up t o  lom8 i n  both X and i a f t e r  long periods of t i m e ,  w e  

see t h a t  the product of the predictable  e r ro r s  i n  X and k agrees with the 

l a r g e s t  a rea l  f luc tua t ion  found fo r  the T mapping. 

) '2 400, so t h a t  i f  w e  use t h i s  same r a t i o  for  11 33 

10-l' (G units) .  What w e  ac tua l ly  f ind 

6 times smaller than t h i s  area,  suggesting t h a t  Ass is  

55 

-12 Having thus determined, to  the 10 accuracy of the I l l i a c  I1 

computer, t ha t  there  e x i s t  E osc i l l a t ions  i n  the T5' hyperbolic invariant  

curves, w e  can now look a t  the composite p ic ture  of & o f  the  TS5 hyper- 

bo l i c  invariant  curves. The (inner) invariant  curve issuing from h(3) 

approaches h(4) v i a  the r ad ia l  asymptote t o  h(4) which makes an angle of 

360' - 15.9' = 344.1' t o  the X-axis. In  what follows w e  assume tha t  our 

point l ies an inf ini tes imal  dis tance from the t rue  mathematical invariant  

curve, and tha t  w e  can perform our T55 mappings with extreme precision. 

After repeated applications of T55, our point slowly emerges near t h e  

outer invariant  curve a t  an angle around 180' - 15.9O = 164.1'. Refer- 

r i n g  t o  the stroboscopic map of the region shown i n  Figure 3 w e  see t h a t  

the point w i l l  now move around the outs ide of the  fixed point e(4) and 

w i l l  then proceed in to  fixed point h(5),  But now it  w i l l  move towards 

the X-axis and along an inner invariant  curve. 

e(5) on the ins ide  and then head out i n to  h ( l ) ,  

It w i l l  next go around 

Next the point  w i l l  

cross the X-axis with an in te rcept  (X ,0) t o  the r i g h t  of e(1) and then r 
proceed t o  h(2). 

through h(3), outside e(3),  through h(4), inside e (4) ,  through h(5), 

In  l i k e  manner the point w i l l  move ins ide  e(2), 

outs ide e(5), through h ( l ) ,  then cross the X-axis w$th an intercept  

h Y 1 
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(X ,0) t o  the l e f t  of e(1lP next pass through h(2), and f ina l ly  move outside a 
e(2) and re turn  t o  h(3) along the same i n i t i a l  invariant  curve, This 

motion represents one complete stroboscopic revolution, 

Therefore the union of the forward-going and the  forward-coming 

(reflected) invariant  curves is i n  r e a l i t y  E ~ n t i n u o u ~ ~  smooth curve with 

an angular period of 4n radians,  

as w e l l  as the  5 outer "islandsut of T55 e l l i p t i c  fixed points. 

then, is what w e  may properly c a l l  the 

- curve of the T 

Ilt simultaneously bounds the inner region 

This curve, 

55 
mapping. 

Determining curve5 which l i e  very close t o  t h i s  T55 invariant curve 

i s  an easy matter on the computer. We now make long-period stroboscopic 

mappings under T5' of a series of points i n  an in te rva l  of the X-axis 

which brackets the inner invariant curve in te rcept  (X ,Ole 

stroboscopic scan of the X-axis (see Figure 3) w e  see tha t  the region i n  

question has a radius ri - 5 x loo3 fo r  8%- 0 (again using El as  or ig in  

of our polar coordinates), 

with X. 

always s t ick ing  to  the  inner periphery of the envelope of the T55 invariant  

curves. On the other hand, points with X.  > X  w i l l  move stroboscopically 

From our i n i t i a l  a 

N 

From Figure 3 i t  is c lear  t h a t  i n i t i a l  points 

l P  X w i l l  move stroboscopically i n  a chockwise sense about E 
L a  

l a  
i n  a counter-c$ockwise sense around e (1 1 

about the e l l i p t i c  point. 

defining the "islandto curves 

(Note tha t  i f  w e  p r in t  out every T1' map of 

these points with x 

curves a s  transforms of the or ig ina l  one around e(l) .)  

> X W e  w i l l  simultaneously obtain the other 4 Bsislandt' 
i a  

We can now take successively f ine r  gr ids  of i n i t i a l  points around the 

suspected X value and calculate  

t ha t  is needed before ssisland'u motions separate from inner-region motions) e 

r about 300 mappings of T1' (about a l l  a 
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It is  then an easy matter t o  narrow the in te rva l  down as close t o  X as 

the e r rors  i n  computation w i l l  permit. 

following bracketed in te rva l  fo r  X 

a 
The r e s u l t  of t h i s  scan is the 

a: 
1.671665069 = XR1 < Xa < XA2= 1.691665070 (23 1 

Sett ing Xi= X 

closed curve very close to  the envelope of the inner 'E55 invar iant  curves, 

as suggested by i ts  long stroboscopic period of 2610 multiples of 11~. 

Similarly by s e t t i n g  Xi= XR2 and -now applying T1' repeatedly, we can obtain 

the 5 approximately closed curves around the 5 08islands'8 (we f ind each has 

a stroboscopic period of 1060 multiples of 11~1, 

the mapping of the  i n i t i a l  point Xi= XR2 (a f te r  about 530 multiples of llr) 

w e  can obtain an approximate value for  the outer  invariant curve intercept  

X of the X-axis, We find t h i s  value to  be Xr = 1,672981475, (In polar 

coordinates about E 

likewise the inner intercept  X has r 2 0,00492964,) 

and applying T55 successively, w e  obtain an approximately a1 

W e  might note t h a t  from 

- 
r 

N 

with 64, t h i s  outer intercept  has rr = 0,00624605; 
1 9  

a a 
The resu l t ing  6 d i s j o i n t  ttclosed'* curves, lying very close to  the 

TS5 hyperbolic invariant curves, a r e  plot ted i n  Figure 5, with direct ional  

arrows fog $he motion indicated on a few. The f ive  T55 e l l i p t i c  fixed 

points a re  plot ted and labeled, while the labeled posit ions of the f ive  

hyperbolic points show up c lear ly  between the f ive  e l l i p t i c  points. 

The same curves are  plot ted i n  Figure 6 as  one continuous closed curve, 

i.e. as the  closed invariant  curve of the 'E mapping, t o  an accuracy 55 

be t t e r  than the  width of the l i nes  i n  the figure,  This closed curve thus 

bounds the invariant  region of s t a b i l i t y  which w e  have been seeking, 

a 



53 

A. 

Let us summarize the r e su l t s  of our de ta i led  calculations,  There 

does exist t o  the loa1* accuracy of the Xlliac II computer a closed region 

of phase-space which surrounds the T1l e l l i p t i c  fixed point (E1) on the 

X-axis and which is invariant  under successive T55 mappings of the  phase- 

space onto i t s e l f ,  Many points i n i t i a l l y  outs ide t h i s  region w i l l  escape 

t o  i n f i n i t y  a f t e r  a f i n i t e  number of T55 mappings. 

fo r  a long t i m e  but eventually escape t o  i n f i n i t y  a lso,  so t ha t  they can 

be considered t o  l i e  in a @@twilight zonen* t h a t  surrounds the invariant  

region, 

TI1 o sc i l l a t ing  invariant  curvesg SO t ha t  points can move from near the 

T33 fixed points about El1 i n t o  the lF1' o sc i l l a t ions  and escape t o  in f in i ty .  

Some points are s t ab le  

The outer T33 invariant  curves o s c i l l a t e  and in t e r sec t  the inner 

M Q W ~ V ~ ~  i n  our par t icu lar  case the mutual in te rsec t ion  of o sc i l -  

11 l a t i n g  invariant  curves which correspond t o  multiples of the basic  (T 
33 mapping terminates a t  the T33 l eve l .  The inner o sc i l l a t ions  of the T 

mapping do not i n t e r sec t  the  outer hyperbolic invariant  curves oE the  T 
55 mapping which apparently have no osc i l l a t ions ,  

hyperbolic invariant  curves is actual ly  one continuous closed curve with 

an angular period of 4Sr radians.  

the  'E'' e l l i p t i c  fixed point El" 

55 

The union of a l l  the  T 

This curve bounds a s t a b l e  region around 

'Ehis qegion of s t ab le  motions consists of 6 cells:: a la rge  inner 

region, plus 5 smaller '8islands*' which surround the 5 e l l i p t i c  fixed 

points of the mapping T 

t i ca l  shape but has 5 d i s t i n c t  bulges toward the 5 hyperbolic points of 

T550 

55 
e e inner region has a generally f l a t  e l l i p -  

Points i n i t i a l l y  inside t h i s  inner region always remain ins ide  the 
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11 region under successive appl icat ions of t he  mapping T They execute 

55 clockwise, a lmost-el l ipt ical  motions under successive mappings of T 
* 

For the purpose of comparison l e t  us a r b i t r a r i l y  select the inner,  

a lmost-el l ipt ical  motion generated by successive T55 mappings of the 

i n i t i a l  point with Oi= 0, r = 0,0045, which is  j u s t  ins ide  the inner hyper- 

bo l ic  invariant  curves of the  T mapping. Next l e t  us match an ellipse t o  

t h i s  motion a t  two points on the  curve, for  example a t  0" and 90*. Ident i -  

i 
55 

fying the r a d i i  a t  these two angles with the  semi-major and semi-minor 

axes of the e l l i p se  respectively,  w e  calculate  the  corresponding "standard" 

eccent r ic i ty  t o  be e = 0.995635. "$he actual deviations of the mapped 
S 

motions from a "standardv8 ell ipse which has an eccent r ic i ty  es are obtained 

by calculat ing the  r a t i o  of the  mapped radius rl a t  some angle 8 

polar radius re of a standard e l l i p s e  for the same angle 8 

standard ell ipse is completely specif ied by e = e and a values. We 

then use the i n i t i a l  radius r 

value of re a t  the  mapped angle 6 

t o  the 1 
This 1" 

O S  0 

a t  Oi= 0 for  the semi-major axis  a e The i 0 

is given by the  equation 1 

We now stroboscopically map the i n i t i a l  point 8 - 0, ri= r = 0.004929639 

i n  order t o  obtain a curve r (8  1 very close to  the inner invariant  curves 

of T55 which bound the  inner cell .  

i- a 

1 1  

A p lo t  of the  r e s u l t s  for  the r a t i o  

r /r 

shown i n  Figure 8, 

of h(41, 15.8% deviations toward hgl)  and h(2), and 9.7% deviations 

toward h(3) and h(5). 

as  a function of 8 around t h i s  mapped curve (using Bo= ri= r ) is l e  1 a 
This p lo t  shows a l a rge  19% deviat ion i n  the  d i rec t ion  

Minimum deviations are about 2% i n  the direct ions 
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Figure 8 .  Deviation from a standard e l l ipse  of a 

curve very close to the union of inner 

hyperbolic invariant curves of  the 

mapping T55e 
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of e(2), e(3), e(4), and e(5),  

points a r e  indicated by small circles.) 

(The values of rl/re f o r  these T 5 5 . e l l i p t i c  

Thus, very close t o  the outer 
* 

edge of the  inner invariant  cell t he  mapped motions deviate  from our very 

f l a t  standard ellipse for  all non-zero angles 

of a standard ell ipse does cons t i tu te  a good way of comparing a wide range 

of mapped motions around E 

Nevertheless the  concept 

1" 
Points lying i n i t i a l l y  ins ide  any one of t he  5 "island" regions w i l l  

always remain inside t h a t  par t icu lar  'sisland'g for  successive mappings of 

T55, but w i l l  jump discontinuously through a l l  5 'aisland'8 regions under the 

11 mapping T 

nearly e l l i p t i c a l  i n  each of the 5 'eislandsD80 

Under TS5 the mapped motions w i l l  be countea-clockwise and 

It is  therefore clear tha t  

w e  can break up our or ig ina l  invariant  region in to  6 cells possessing 

separate invariance properties and predictable stroboseopic motions under 

TS5* 

closed invariant  curve, w e  can say t h a t  there  is  2 invariant  region with 

- a doubly-periodic boundary. 

But because these same 6 cells a re  a l so  bounded by one continous 

These r e s u l t s  can be applied t o  a t o t a l l y  d i f f e ren t  type of problem, 

the numerical search for additional in tegra ls  of motion (see, for  example, 

the  work of Boz i sg '  on the r e s t r i c t ed  three-body problem), 

Heiles"', i n  an earlier general search, plot ted d i s j o i n t  curves which i n  

r e a l i t y  are stroboscopic t r a j ec to r i e s  around various T sa te l l i t e  fixed 

points (e.g. t h e i r  Figure 5 is  exactly analogous t o  our Figure 31,  They 

H&on and 

mn 

studied these d i s j o i n t  curves for  a wide range of values of t he  energy E 

(they considered motions under a general nonlinear potent ia l ) .  

i n  the l i g h t  of our r e su l t s ,  t h e i r  work shows t h a t  the par t i su la r  Tm 

cluster of s a t e l l i t e  multiple points which bounds the invariant  region(s) 

Interpreted 

Their p lo t s  for  lower energies demonstrate t ha t  
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the  T3n s a t e l l i t e  fixed points bound the invariant  regionQs), whereas a t  

higher energies the T points form the boundary. 

the invariant regions get  smaller and smaller, undoubtedly involving Tm 

5n A t  s t i l l  higher energies 

points with very la rge  m, 

a mul t ip l ic i ty  of m = 37:) 

(One of the figures i n  the paper of Bozis shows 

H&on and Heifes r e fe r  t o  the i r  closed curves ( f o e e  the stroboscopic 

around the  central  point and around the outlying 8gislandsu8 as t r a  jec tor ies  

d i s jo in t  " i so la t ing  th i rd  in tegra ls  of the motion'" Points , with puzzling 

random (or jumping) behaviors, which l i e  outside these curves are  referred 

t o  as points on the *'ergodic t r a j ec to r i e s  i n  the sea between the islands" 

( i 9 e o  where the th i rd  in tegra l  is  non-isolating), Our work shows tha t  

these points a re  following completely t r a j ec to r i e s ,  as long as  

the global Tm mappings a re  known, It is  a l so  clear  t ha t  the invariant  

region@) w e  have found a re  j u s t  those regions where an " isolat ing th i rd  

in tegra l  of the motion" exists, In  f a c t ,  the bounding invariant curve of 

our 6 invariant ce l l s  is  a graphic example of such an " isolat ing integral  

of the  motion", for  i t  exhibi ts  a functional re la t ionship between X, 2, and 

t for successive stroboscopic (integrated) motions. Thus the application 

of our methods not only w i l l  y ie ld  the invariant  curves and regions of 

s t a b i l i t y  (for a given equation with given parameter values), but a l so  w i l l  

exhibi t  simultaneously the regions of phase-space i n  which " isolat ing 

in tegra ls  of the motion" e x i s t ,  In  r e a l i t y ,  these two concepts a re  . , __ 

equivalent. 

B e  

Since the delineation of a local ly  s t ab le  invariant  region for  our 

equation has involved much computer t i m e ,  it would be desirable  to  u t i l i z e  

4 b 
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any general mathematical methods avai lable  for  the reduction of the t i m e  

required. 

theorem of Moser- 

them are  shown i n  Figure 2) are highly suggestive of properties which 

might be necessary conditions for stroboscopic s t a b i l i t y .  

To t h i s  end w e  sha l l  discuss the appl icabi l i ty  of a recent 

I f /  Our exploratory mappings of the X-axis (a few of 

The most obvious 

one is the property of t w i s t  mappinm of the phase-plane, where the angles 

of the mapped points increase monotonically with rad ia l  distance from the 

given fixed point,  

mappings Trim (for m=1,2,3,4,5 

In  Figure 2 w e  see t h a t  t h i s  property holds for  a l l  the 

1 as long a s  w e  s tay moderately close t o  E 

(within, roughly, an e l l i p t i c a l  region with e = es and semi-major axis 

a < 0.0100). 

complicated, so tha t  a monotonically increasing T t w i s t  mapping may 

no longer e x i s t ,  

r i gh t  of E 

s a t i s f i e d  for  a small region around (1.652, -0,005), This region lies 

0 

As we get  far ther  away from El the twisting gets  much more 
0 -  

l l m  

For example, fo r  the T44 mapping of the X-axis t o  the 

4- (curve D ) we see tha t  the condition of equation (12) is not 1 

j u s t  outside the T33 e l l i p t i c  fixed point e2 (which is located by the 

+ 8 intersect ion of curves D and A I Q  Therefore, i t  appears t ha t  some type  

of a t w i s t  mapping property does exist i n  the in t e r io r  of an elongated 

irregular’ region bounded, roughly, by the 6 fixed points of the T 33 mapping. 
l l m  The maps of Figure 2 indicate  the general regions i n  which a T 

t w i s t  mapping appears t o  exist, but these regions are  much more extensive 

( in  area) than the known invariant  regions of Figures 5 and 6. 

seems to  be no clue here tha t  the T5’ invariant curves form the boundary 

There 

of the invariant region. So l e t  us examine i n  d e t a i l  the general region 

of the T5’ fixed points,  where w e  know t h a t  an invariant  region exists, 

Since the inner stroboscopic motions a re  clockwise and almost-el l ipt ical  
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(see Figure 3) ,  l e t  us make a T55 mapping of a set of concentric ellipses 

and rad ia t ing  s t r a igh t  l i nes  about and through the point E 

these i n i t i a l  curves and l i n e s  a re  shown i n  Figure 9. The eccent r ic i ty  of 

The maps of 1" 
0 

the  i n i t i a l  e l l i p s e s  is eo= es= 0,995635. 

major axes a a re  10 x lom4# 30 x low4, and 45 x loe4 t o  125 x lom4 i n  

s teps  of 10 x 10 

cated near t h e i r  T55 maps. 

hold throughout t h i s  range of i n i t i a l  semi-major axis  values. 

The values of the i n i t i a l  semi- 

0 

-4 The angles Go of the  i n i t i a l  s t r a i g h t  l i n e s  are indi-  

Evidently a TS5 t w i s t  mapping condition does 

Again, however, 

there  does not appear t o  be any readi ly  .elBible ind iea t ion ,of>  the  actual  

existence of an invariant  region for a. = 50 x lQQ4* N 

N 
For a. = 100 x the  mapped curves deviate considerably from the i r  

i n i t i a l  e l l i p t i c a l  shapes, especial ly  for  the  i n i t i a l  angles around O " ,  165"' 

and 215", Referring t o  the p lo t s  of the T33 mappings (Figures 5 and 61, w e  

see tha t  the three  prominent direct ions for  "bulging" of the  T55 t w i s t  maps 

i n  Figure 9 are toward the  3 hyperbolic ''escape channels'' of the  T 33 
mapping 

( i e e e  along i ts  3 outgoing outer invariant  curves), 

of impending escape t o  i n f i n i t y  v i a  the T33 and TI1 o sc i l l a t ing  invariant  

curves, begin t o  show up f a i n t l y  i n  the mapped curves of Figure 9 a t  about 

a = 85 x 10-48 but not noticeably before tha t ,  

s t r i k i n g  behaviors of the mappings which might indicate  the  precise loca- 

t i o n  of the  invariant  region around El' 

These bulges, signs 

So once again w e  find no 
0 

15f Moser has demonstrated the theoret ical  existence of invariant  

curves and regions for mappings which a re  small perturbations of the  

c i rcu lar  t w i s t  mapping. OUK mappings are very f l a t  e l l i p t i c a l  t w i s t  

mappings, but w e  can change our scale SO t h a t  the  minor axis  of our el-  

l i p t i c a l  motions approximately equals the major axis (e,g. w e  can adjust  
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Figure 9.  mappings of i n i t i a l l y  concentric 

standard ellipses and radiating straight 

l ines  around the TI1 fixed point. 
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t he  value of po i n  equation ( 2 0 ) ) ,  An equivalent procedure is  t o  choose 

a par t icu lar  standard ell ipse,  masp i t s  points,  and compare the resu l t ing  

locus (i,e, the image curve) with the or ig ina l  e l l i p se .  T h i s  procedure 

is  precisely the one which w e  followed i n  order to obtain Figure 9. 

55 Now l e t  us see i f  MoserOs conditions apply to the %: mapping. The 

computations for  Figure 9 show tha t  the image curve and the i n i t i a l  curve 

(a standard e l l i p s e )  generally in te rsec t  each other  _D_o four times. 

MOser's f i r s t  condition (equation (16 9 is  s a t i s f i e d ,  

h i s  other conditions (equations ( l a )  and (18)) w e  would f i r s t  have to 

exhib i t  h i s  functions a(a: l 9  F(ro900), and G(rop~o)Q 

w e  see tha t  t h i s  can be Bone d i r ec t ly  by calculating the increments 

Thus 

In  order t o  check - 

From equations (13) 
0 

where (ro,eo9 is the i n i t i a l  point and (r 

whole series of i n i t i a l l y  concentric ell ipses ., 

t ha t  ese  ao9 and 8 

on the  i n i t i a l  standard ell ipse,)  

w e  obtain the  angular dependence of the F function (for one a value) 

plus one value of the M function, 

the  angular dependence of the G function for  one a value. By repeating 

t h i s  process for  many i n i t i a l  e l l i p s e s  with d i f f e ren t  i n i t i a l  semi-major 

0 ) is  the mapped point,  for  a l9 1 
(Recall from equation (24) 

uniquely determine the  to= re coordinates of points . o  

By plo t t ing  the A0 increment versus 8 
0 

0 

Similarly a p lo t  of /Jx versus 8 yields  
0 

0 

axes a (keeping es constant) w e  can obtain a, F ,  and G as  functions of 
0 

for  various values of goo 
aO 

Before examining these functional dependences i n  d e t a i l ,  l e t  us 

write down a more convenient of %ser0s twist mapping, 



64 

using d i f f e ren t  functional symbols: 

n r = T (ro) = ro 1 and 

where a and e a r e  the semi-mjor 
0 0 

4- S b o P e o P ~ o ~  (28 )  

axis  and the eccent r ic i ty  respectively 

of an e l l ipse close t o  its image curve which lies within some e l l i p t i c a l  

annular region. Note tha t  the var iab le  ro (or r ) can be expressed i n  

terms of the bas ic  var iables  a. (or a l )  and eo by using equation (241, 

Because of t h e  three var iables  now (aopeoB and O o ) ,  the  task of 

1 

exhibi t ing the functions p g  R, and S is grea t ly  complicated. I f ,  however, 

w e  s e t  e = es for  convenience, then w e  have the s impler  problem of mapping 

concentric i n i t i a l  ellipses and r ad ia l  s t r a i g h t  l i n e s  and determining the 

functional dependences as before. 

Figure 9 w e  can calculate  the basic  

0 

Using the data  from the p lo ts  i n  

mapping increments 

A0 = 

and br = 

as  functions of a or  8 
0 0 

discussion of methods f o r  obtaining Moser's functions @,F, end G ) ,  w e  

f ind i t  more convenient to f i r s t  calculente AQ and Ar as  functions of a 

fo r  various fixed i n i t i a l  values of eo ( i ,e ,  for  a series of d i f f e ren t  

0 

i n i t i a l  s t r a i g h t  l i nes ) ,  

The r e s u l t s  of these calculations for  A8 and br a re  plot ted i n  

Figures 10 and 11 respectively.  

8 = 15' and 95') a re  p lo ts  of Ae or  Ar versus roo 

The dashed curves i n  both f igures  (for 

The so l id  curves (for 
0 

* 
I 
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Figure 10. Angular TS5 mapping increment A0 as a 

function of the semf-major axis a of 

an i n i t i a l  standard ellipse, for several 

i n i t i a l  angles eo, 

0 
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h 

Figure 11. Radial T55 mapping increment Pr as a 

function of the semi-major axis a. of 

an i n i t i a l  standard e l l i p s e ,  for several 

i n i t i a l  angles Ooo 
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8 = 0° ,50 ,150,250,450,95" ,135" ,  and 180') are p lo ts  of A8 or  hr versus a e 

0 0 

We immediately see tha t  p lo t t ing  the increments A8 or hr versus a 

a spectrum of curves t h a t  can be eas i ly  compared, whereas p lo t t ing  versus 

gives 
0 

II 

r does not. 
0 

Referring now t o  the so l id  curves i n  Figure 10, w e  notice tha t  the 

A8 function is  smooth and d i f fe ren t iab le  over the  f u l l  range 0 < a. < 125 x loa4, 
w e l l  beyond the  known invariant region a t  a 

is  always negative fo r  the inner region 0 6 a 

for  the outer region 60 x lom4 < a < 125 x IOm4# and is monotonically 

increasing over the f u l l  range, 

N 

= 50 x The A8 function 
0 

-4 < 55 x 10 always posi t ive 
0 

0 

The f i r s t  two features  correspond t o  the 

known (opposite) direct ions of the stroboscopic motions for  , the two regions 

The small region between the inner and outer regions corresponds t o  the 

c lus te r  of T55 fixed points,  where the sense of the motion changes s ign  a t  

d i f fe ren t  a 

l i n e  through e ( l )  with one through h(1)).  

values depending on the  angle eo (e,g. compare a s t r a i g h t  
0 

The function p is ordinar i ly  obtained by p lo t t ing  A8 versus eo for 

various fixed i n i t i a l  values of a and i s  the angularly independent par t  
O *  

of each.of these curves, Now the A8 function is  approximately symmetric 

about 8 = 180°, so w e  might use the Ae intercepts  a t  eo= Oo lor 180' as 
0 

the value of @(ao) for  each curve, provided they are  ident ica l  (p is j u s t  

l i k e  an addi t ive constant for  a l l  8 values).  I f  they are not ident ica l ,  

then the function p contains some angular dependence (and there is no 

exact symmetry about eo= 180'). One way to check t h i s  poss ib i l i ty  is t o  

compare the  8 = 0' and 180' curves i n  Figure 10 for  the f u l l  range of a. 

0 

0 

values. 

from one another by less than O a 1 0  i n  the ordinate 48., Both curves 

For the inner region w e  f ind tha t  these two curves always d i f f e r  
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increase almost l inear ly  from about A@ 

A@ 2' -0.3@ for  ao= 50.5 x low4* For the outer region w e  f ind tha t  the 

two curves d i f f e r  widely from one another by as  much as 24' for  ao= 125 x loo4* 

-1.25' f o r  a = 10 x lom4 t o  about 
0 

They s t i l l  increase monotonically. 

Hence w e  may conclude tha t  fo r  the inner region the function f3 is a 

small, negative, almost l i nea r ly  increasing function of aoD with approxi- 

mately no angular dependence, 

posi t ive,  increasing function of a 

For the outer region p is  a ra ther  large,  

with very d e f i n i t e  angular dependence, 
O *  

The function R(Bo,eS,8 1 f o r  the inner region is a negative, mono- 
0 

tonical ly  increasing function of a 

region w e  see tha t  for  fixed a values, A8 f i r s t  decreases with increasing 

8 and then increases again. 

with respect t o  8 is pos i t i ve  for  a l l  8 and a l l  a. i n  t h i s  region. For 

for  a l l  angles eo,, For t h i s  inner 
0 

0 

In  other words the second der ivat ive of A@ 
0 

0 0 

the outer region the conclusions are not so d e f i n i t e  because of the angular 

dependence of p (which decreases as 8 increases),  

function of a which increases with increasing a except for  8 7 15' 

when the reverse is  t rue ,  

t h a t  the second der ivat ive of A0 with respect t o  eo is  ROW negative for  a l l  

eo when a. C 80 x 10m40 When a. > 80 x lom4 t h i s  der ivat ive is  s t i l l  

negative for  most values of 6 

region EOP o 

Here R is  a posi t ive 
0 

0 OP 0 

Scanning the angular dependence w e  observe 

but it does develop a pronounced posi t ive 
o9  

eo 2 15'3: 

L e t  us now turn  to the so l id  curves for  CLa: versus a i n  Figure 11. 

Analogous to  the A8 function, the Ar = S(ao9es,eo) function appears t o  be 

smooth and d i f fe ren t iab le  over the f u l l  range 0 < a. < 125 x lom4, again 

w e l l  beyond the known invariant region, 

on both posi t ive and negative values inside each region, depending on 

0 

Now, however, the function takes 
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the 8 value, 

function over the  two regions. 

8(ao,es980) has a varied (continuous) dependence on a. i n  both regions, 

For the inner region w e  not ice  tha t  the function br is generally posi t ive 

and rather  small for  a l l  angles eo. 

4-5.1 x 

region). 

is markedly greater .  

fo r  AK is  3.86 x loe4 t o  -81 x l ow4*  

inner region the  function S is nearly independent of the angle 8 

fo r  the outer  region i t  is strongly dependent on both a. and Qo0 

There is  a l so  no s t r ik ing  pa t te rn  of monotonicity of the 
0 

We can only say t h a t  the  function 

In f a c t  the values of AK range between 

and -1.3 x lom4 for  a l l  values of eo (when a. is i n  the inner 

For the outer region the f luctuat ion of Pr with vatying 8 values 
0 

For example, for  a = 125 x lom4 the range of values 
0 

Thus w e  can conclude tha t  for the 

whereas 
0' 

All of these r e su l t s  fo r  the behavior of our 8,  R, and S functions 

(or Maser's a, F, and G functions i f  we convert t o  the  polar coordinates 

r,8 exclusively) can be summarized i n  the  following re la t ions  for  the 

two regions discussed above: 
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We are now i n  a posit ion t o  check the appl icabi l i ty  of Moser's 

second and th i rd  conditions (equations (17) and (18)) t o  our T55 mapping. 

F i r s t  of a l l ,  i t  is  clear  t h a t  p (or a) is a monotonically increasing 

function of a. over the f u l l  range of a. values plot ted,  

dg/da 

a$/aao is posi t ive,  increasing and bounded i n  the outer region, 

i f  we choose any number greater than the upper bound of w/aao as the 

constant Co i n  equation (17 

f ied  by our T55 mapping over the open interval  0 

The value of 

is  posi t ive and approximately constant i n  the inner region, while 
0 

Therefore 

then Moser's second condition w i l l  be s a t i s -  

a. K 125 x 

In  order t o  check Moser's th i rd  condition w e  f i r s t  observe t h a t  

both the R and S functions are bounded and continuous over the open in t e r -  

va l  0 < a. .< 125 x 10m40 Thus w e  can choose some f i n i t e  value of bo which 

is greater than the  sum of the  absolute bounds of the R and $ functions. 

From the smooth, continuous behavior of the $, R, and S functions w e  can 

estimate the sum of the  absolute values of the R - 333- p a r t i a l  der ivat ives  r d  

of these three functions as  approximately zero, and i n  any case less than 

the value of Co chosen above. Hence Moser's t h i rd  condition is s a t i s f i e d  

by our T55 mapping over the open in te rva l  0 6 a. .< 125 x 
k' 

Because a l l  of Maser's conditions a re  s a t i s f i e d ,  w e  may conclude 
I___ 

t h a t  invariant  closed curves and regions w i l l  exist somewhere within the 

F ii 
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standard e l l i p s e  having a = 125 x 

already found an invariant  region 

0 
lom4 and es= 0,995635, Indeed w e  have 

which is bounded by the union of the  
C C  - 

hyperbolic invariant  curves of the 'fJ mapping and which is located approxi- 

mately within the standard e l l i p s e  having ao= 50 x 10 

a l so  seen t h a t  points outs ide the l a t t e r  e l l i p s e  but s t i l l  ins ide  the 

-4 la rger  e l l i p s e  having a = 125 x 10 

t i m e .  

region as w e l l ,  w e  conclude tha t  Moser@s conditions a re  a su f f i c i en t  t o  

loca te  the invariant  region precisely.  

-4 However w e  have 

i n  a f i n i t e  
0 

Since Moser's conditions apply t o  t h i s  outer ,  unstable (non-invariant) 

The empirical properties summarized i n  equations (31) through (34) 

exhibi t  several  d i s t inc t ions  between the inner invariant region and the 

outer  non-invariant region for  the T55 mapping. 

of f3 from a . l i n e a r  t o  a nonlinear function and the abrupt change of magni- 

For example, the t r ans i t i on  

tude and functional dependences of $3 may be possible theoret ical  clues 

t o  the exact locat ion of the invariant region. A t  t h i s  point i t  should 

be noted tha t  exhibit ing the p p  8, and S functions involves as much work 

as actual ly  locating the invariant region accurately. But an adequate 

theorem would def in i te ly  be valuable for  rigorously proving the actual  

invariance of the region, 

C. 

Having shown t h a t  

a t  present 

now summarize our prac t ica l ,  empirical methods for  exhibit ing the existence 

and form of the invariant curves, 

The f i r s t  s t e p  is  t o  find the  fixed points by scanning the phase- 

plane i n  some systematic fashion, such a s  repeatedly mapping a gr id  or mesh 

1 i 
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of points. 

intersect ions w i l l  y ie ld  a l l  the fixed points i n  the phase-space, 

t h i s  work a computer program based on numerical integrat ion (e,g, a Runge- 

Kutta-Gill routine) should be qui te  adequate. 

I f  these mappings a re  superimposed on the or ig ina l  gr id ,  t he i r  

For 
.e, 

Next w e  can look for  invariant  regions around any par t icu lar  one 

of these fixed points,  I f  T*(T) r e f e r s  t o  the mapping under which the  

given point is fixed, then w e  can apply t h i s  mapping a number of times m 

i n  succession t o  each of a series of points along an axis  through the fixed 

point (e.g. m=5 or 10 times). This i n i t i a l  scan can be ra ther  coarse, but 

should cover a reasonable neighborhood around the fixed point (for example, 

a rad ia l  range of perhaps 

t h  p lo t  the locus of t h a t  par t icular  rrp- map of the e n t i r e  series of points 

t o  lom2 or  more). Mow for  each value of m 

along the  ax is ,  

of points along the axis  w i l l  jump about discontinuously and may quickly 

reach i n f i n i t y  (even for  m=2 o r  3 ) .  

I f  the or ig ina l  point is  strongly unstable, then the maps 

But i f  the mapped l o c i  of the axis  

points seem t o  possess some form of a general e l l ip t ica l  t w i s t  mapping 

of tha t  ax is ,  then look for  any repeating pat terns  i n  the successive T n 

mappings of each i n i t i a l  axis point by i t s e l f ,  

or  especially the angles of the mapped points seem t o  exhibi t  s i m i l a r i t i e s  

every m cycles of the  mapping Tn% 

a f iner  gr id  and scan closer t o  the or ig ina l  fixed point ;  increase the 

number m of successive T 

For example, do the r a d i i  

%f so, for  what regions? I f  not, make 

n mappings of each point,  

I f  a pa t te rn  eventually emerges, it w i l l  probably be indicat ive of 

t h  precisely which m-- c lus te r  of Tm(.p) satel l i te  multiple points of the 

or ig ina l  fixed point bounds the invariant  region (and which hyperbolic 

invariant  curves make up the doubly-periodic invariant curve around t h a t  
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region). 

s t ab le ,  then the or ig ina l  point is probably an e l l i p t i c  point which is 

nevertheless unstable, 

e l l ipt ical  t w i s t  mapping around an e l l i p t i c  fixed point seems t o  be a 

I f  no pa t te rn  ever emergesD even though the mappings are quasi- 

Again w e  should stress t h a t  the appearance of an 

necessary (but not necessar i ly  su f f i c i en t )  condition for  the existence of 

an invariant  region. The appearance of a i n  cycles of 

every g mappings of 'E 

mapping ?(TI which exhib i t s  the seemingly necessary t w i s t  mapping ' )  

conditions 

n seems t o  be the  chief indicator of the pa r t i cu la r  

To obtain the invariant  region more accurately,  w e  can first scan 

mn a l l  our i n i t i a l  T t w i s t  maps o f  the  ax is  for a141 mutual in te rsec t ions  t o  

see whether o r  not we already may have found any of the 2M fixed points of 

the aM" mapping of the axis .  I f  not, w e  w i l l  have t o  make a crude mapping 

of the axis  for points whose r a d i i  coincide approximately with the outer 

bounds of the  region which exhib i t s  the M-fold mapping pat terns .  In  any 

case, once approximate values for  the two 

are found, t h e i r  exact locat ion can be determined as accurately as desired 

by taking successively f ine r  and f ine r  gr ids  of i n i t i a l  points.  

making repeated Tn mappings of both of these points for  a t o t a l  of (M-1) 

times each, the e n t i r e  c lus t e r  of 2M a l te rna t ing  hyperbolic and e l l i p t i c  

TM" s a t e l l i t e  fixed points  can be located.  

fixed points on the axis  

By 

These w i l l  bound the  invariant  

region, 

W e  now make some preliminary short-period TM" stroboscopic mappings 

(perhaps for  50 t o  100 ssrobe. p~~~~~~~ of a series of points on the axis 

and ins ide  the c lus t e r  o f  TM" satel l i te  points.  

show the  e l l i p t i c a l  charaeter of the inner motions, plus the sense of 

These. mappings w i l l  
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t h e i r  stroboscopic ro ta t ions  (which reverse outside the region), I f ,  i n  

f a c t ,  w e  map a coarse gr id  of imer axis  points which extend towards the 

T- e l l i p t i c  fixed point on t h a t  ax is ,  w e  w i l l  f ind tha t  those gr id  points 

f a r thes t  from the  TPI" fixed point w i l l  move nearly e l l i p t i c a l l y  around the 

7 inner region i n  one direct ion.  Grid points closer t o  the aM" fixed point 

w i l l  move outward around t h a t  e l l i p t i c  fixed point i t s e l f ,  i n  an opposite 

sense, By taking f ine r  and f iner  gr ids  w e  can locate  (to the accuracy of 

the computer) the approximate borderline between these motions. 

longer-period stroboscopic mappings (e.g, for  500 to  1000 s t robe periods of 

- 

Mow, 

Mn T 

the  inner union of hyperbolic invariant curves ( i f  w e  use TM" pr in touts ) ,  

plus _all the outer hyperbolic invariant curves surrounding the M e l l ip t ica l  

cells or  s8islands'8 ( i f  w e  use l? p r i n t  uts), 

) of two points on opposite s ides  of t h i s  borderline w i l l  t race out both 

The union of these (Ml) 1 

curves w i l l  be the one c ~ ~ t i n u ~ u s  doubly-periodic invariant curve of TM" 
which bounds the invariant  region, i n  the l i m i t  t ha t  our two i n i t i a l  

points approach the  inner invariant  curve. 

A l l  of the preceding s t e p s  can be carr ied out quickly and e f f i c i en t ly  

u t i l i z i n g  only a moderately accurate computer and a numerical integrat ion 

rout ine (such as our Fortran program included i n  the second appendix). 

special  cases some numerical analysis may be necessary t o  obtain su f f i c i en t  

accuracy fo r  the longer-period stroboscopic mappings (needed t o  generate 

I n  

the actual closed invariant  curve), 

should enable one to  eas i ly  and r e l a t ive ly  accurately determine the 

invariant  regions and henee the stroboscopic s t a b i l i t y  of any par t icular  

solut ion (fixed point)  of a par t icu lar  d i f f e ren t i a l  equation, 

But i n  general the preceding methods 

I f  more detai led proof of the stroboscopic s t a b i l i t y  of a par t icu lar  

3 
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solut ion is desired,  then w e  must study careful ly  the hyperbolic invariant  

curves of a l l  T . mappings (at  l e a s t  up t o  m=M) of a global region around 

our par t icu lar  fixed point. By mapping the  inner and outer hyperbolic 

invariant curves "layer by layerfo (i,e, fo r  consecutive values of m),  w e  

can check fo r  intersect ions 0f these consecutive I?e"" invariant curves. 

Thus w e  can gradually exhibi t  the mechanisms or  08channelsa8 whereby points 

can escape t o  i n f i n i t y  from regions close t o  our par t icu lar  fixed point,  

After "peeling offt1 each suceessive Tayersa u n t i l  w e  reach one layer whose 

T'" hyperbolic invariant  curves do not i n t e r sec t  those of the next outer 

mn 

layer ,  w e  can conclude t h a t  the escape mechanism no longer holds fo r  t h i s  

layer ,  (That is, the hyperbolic invariant  curves of the aM" mapping 

develop no osc i l l a t ions  with which to  carry points out t o  i n f i n i t y , )  

To exp l i e i t l y  demonstrate the non-oscillagory behavior of these 

lm hyperbolic invariant  C U K V ~ S  would require more accuracy st i l l  

ever,  t h i s  seems not t o  be important for  our conclusion t h a t  the union 

of the hyperbolic invariant  curves of the aM" mapping isolated above w i l l  

therefore form the continuous, cl0sed, doubly-periodic boundary of an 

invariant region of absolute stroboscopic s t a b i l i t y .  

How- 
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N e  APPENDIX -- ANALYSIS 

A0 

The f i r s t  in tegra l  of equation (20), when p"p and X is an in te rcept  
0 a 

_.  
on the X-axis, is  simply 

A half-period of motion described by t h i s  equation i n  phase-space is  an a r c  

of a quasi-el l ipse which in t e r sec t s  the X-axis a t  Xa and is concave inward. 

Similarly when p=-p and Xb is another X-axis in te rcept ,  the f i r s t  in tegra l  
0 

of equation (20) is 

(36 
(dX/dtI2 %po X = -%Po Xb 4 0 0 

A half-period of motion described by t h i s  equation i n  phase-space i s  an 

a r e  of a quasi-hyperbola which in t e r sec t s  the X-axis a t  X and is concave 

outward. 

f i r s t  in tegra l  of equation (20) is 

b 

Final ly  when p=-po and ic is an in te rcept  on the A-axis, the 

where e is a r e a l  constant. 

of a 

concave outward. Notice tha t  a t r a n s i t i o n  must occur between the l a s t  two 

typesi,of quasi-hyperbolic motion whenever X 

Again a half-period of the motion is  an a r c  

which now in t e r sec t s  the i - ax i s  a t  i and is a l so  
C 

= 0, i.e. when -2  4 - %pox 

a 
x -  X2 

The motion described by t h i s  l a s t  equation consis ts  of two parabolas 

through the o r ig in  i n  phase-space. It reveals  t h a t  the o r ig in  is a 

parabolic (nodal) fixed point of equation (20), 
-? 
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P 

Equations (35), (36), and (37) above can be reduced to  a standard form 

where Ci is  Xap Xb, o r  c respectively.  

i n  terms of the  Jacobian e l l i p t i c  functions snu, cnu, and dnu. 

grat ion has been done by Bartlettg', and the r e su l t i ng  solutions fo r  the 

three basic types of motion considered above are reproduced here. 

This standard form can be integrated 

This inte-  

X = Xa enu 

2 2 2 = 6 Xb snu dnuicn u 

5 'b 

= c2 dnu/(l 4- cnu) 

u = F c t  
A number of theore t ica l  predictions based on these r e s u l t s  can be made 

about the general properties of the  motion-- , but w e  w i l l  not dwell on 

them here, Instead w e  w i l l  go d i r ec t ly  t o  the more spec i f i c  problem of 

numerically calculating many highly accurate solut ions (X( t )  ,i(t)) from 

any arb i t ra ry  set of i n i t i a l  conditions (Xi$i) e 

131 
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B. Jacobian e l l ip t ic  functions 

The f i r s t  obvious problem i n  doing OUT numerical calculations is one 

of obtaining accurate tables  of the Jacobian e l l i p t i c  functions snu, cnu, 

and dnu. 

of the four Jacobian Theta functions, which i n  tu rn  a re  expressible a s  

Each of these functions can be wr i t ten  as products and quotients 

i n f i n i t e  series, 

Function Tablesg' 

The r e su l t i ng  formulas, taken from the Smithsonian E l l i p t i c  

a r e  reproduced here for  reference 

(43 

with 

and 

(44) 

(45 

(51 1 

K = 1.854074677301372... 

q = 0,04321391826377225..0 

TI = 3.14159265358979323846,.. 

a 
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the  calculat ion of the  c i r cu la r  

admirably su i ted  t o  a high-speed, 

Since highly accurate rout ines  e x i s t  for  

functions used above, these formulas a re  

highly accurate d i g i t a l  computer such as  the I l l i a c  11. 

I n  our work, tab les  fo r  the e l l i p t i c  functions snu, cnu, and dnu a r e  

calculated and s tored by the  computer i n  terms of the "angular" argument b,  

where 

u = K(b/90) (52) 

so t ha t  

v = bf180 (53 1 

The tab les  are calculated f o r  the f i r s t  quadrant values of b (i.e. for  

0.0 5 b 5 90.0) i n  s t e p s  of 0,1 i n  b, 

the e l l i p t i c  functions ( e . g .  snu and cnu a r e  analogous t o  s inu  and COSU, 

with K playing the r o l e  of R/2) and using the f i r s t  quadrant tab les  calcu- 

la ted  above, w e  can eas i ly  obtain any of the e l l i p t i c  functional values for  

the  f u l l  range 0 5 u 5 4K, 

Using the per iodic  propert ies  of 
- 

For example, i t  w i l l  be  necessary t o  ca lcu la te  

and s t o r e  a t a b l e  of values of the function 
I 

S(u) = snu/(1 + cnu) (54) 

f o r  the range 0 5 u 5 3K/2. For the  range 0 5 u 5 K  it is a t r i v i a l  calcu- 

l a t ion .  For the range K 

the function snu/(l-cnu) s t a r t i n g  with the u=K end of the f i r s t  quadrant 

tables  and going backwards toward u=K/2 ( i o e e  b=45.0), 

then s tored as S(u) s t a r t i n g  a t  u=% and going forwards toward u=3K/2 

( i q e e  b=145.0) * 

u - < 3K/2 the t ab le  is assembled by calculat ing 

These r e s u l t s  a r e  

A t  t h i s  point w e  should remark t h a t  i f  only a E values of the 

e l l i p t i c  functions a r e  needed, it would be most e f f i c i e n t  t o  use equations 

(43) through (53) e t i m e  the  need arose. However fo r  an inordinately 
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5 l a rge  number of required values (e,g. as  many as  10 p e r  t ra jec tory ,  as i n  

the present work), it becomes more e f f i c i e n t  t i m e - w i s e  t o  construct r e l a -  

t ive ly  small, accurate tab les  and then use an accurate (nonlinear) interpo- 

l a t i o n  routine.  

i n t e rva l )  in te rpola t ion  routine- I which has an average execution t i m e  of 

In  t h i s  work w e  make use of a Lagrange six-point (equal 

21f 

375 microseconds per  entry on the IBM-7094 computer. This method u t i l i z e s  

the  three nearest  t ab le  en t r i e s  on each s ide  of the input value of u and then 

in te rpola tes  the  ( e l l i p t i c )  functional value corresponding t o  u from a s ix th-  

order f i t  of the  6 tabulated functional values. The r e s u l t s  a r e  then nearly 

as accurate as  i f  they had been calculated from the or ig ina l  i n f i n i t e  s e r i e s  

expressions. 

small t ab les  (our tab les  contained 900 en t r i e s  for  the  range 0 5 u ZK) and 

st i l l  obtain highly accurate interpolat ions,  

It should be noted t h a t  t h i s  method allows us t o  use r e l a t ive ly  

For a small computer memory 

core t h i s  eff ic iency is  e s sen t i a l ,  

c. 

A second major problem which w e  w i l l  face i n  the  actual calculat ions 

is tha t  of obtaining accurate values for  the inverted Jacobian e l l i p t i c  

functions,  Instead of using the obvious e l l i p t i c  in tegra ls  ( ioeo  the 

formal inversions of the e l l i p t i c  functions 

w e  w i l l  consider several  a l t e rna t ives  which a re  more e f f i c i e n t  with regard 

t o  ca lcu la te  s t i l l  more tab les ,  

t o  saving t i m e  and memory core, One a l t e rna t ive  is t o  adapt a Lagrangian 

six-point (unequal i n t e rva l )  interpolat ion routine t o  the calculat ions.  

This approach is  the desirable  one fo r  highest  accuracy and overa l l  ef f iciency 

I n  the present work, however, i t  has been more expedient t o  follow a d i f -  

fe ren t  approach, one of approximation and i t e r a t i o n ,  From equations 

(4Oa,b,c), (41aoboc) ,  and (42a,b,c) for the  three d i f f e ren t  types of motion 
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i t  is seen tha t  w e  only have t o  invert  cnu (for both QE and QH 16 Motions) 

and the S(u) = snuf (lfcnu) function (for QH II Motion only). 

i Given some value of cnu which w e  wish t o  inver t  i n  order t o  obtain 

u let  us quickly scan our cnu tab le  and determine between which two en t r i e s  is 

our value of mui l ies.  

call it bo= 90uofK (where uo < ui is the nearest  smaller value of u, with 

cnu > cnui the nearest  l a rger  value of enu), 

expansion for  cnui about the point muo. 

functionsg1 w e  obtain 

Then let: us choose the one with the smaller b value, 

Now l e t  us write a Taylor 
0 

Using the properties of the e l l i p t i c  

3 2  2 3  5 2 4  mu.= f ., goo - l f 2  foA f 112 gofoA 9 1f8~fo-2fogo)A f o o l  
1 0  

(55) 

where 

= cnu 
0 { ii = snuO dnuo ] 

= (Ui"Uo) 0 

For the f i r s t  approximation w e  neglect a l l  nonlinear terms and obtain 

4 = (f 0 -cnuibfgo (57 1 

2 Neglecting terms beyond A and using 4 i n  the second-order term, w e  obtain 

the second-order approximation 

Similarly w e  obtain the  third-order approximation 

Given cnui and having chosen the nearby smallek base value uo w e  can readi ly  

calculate  first 4, then 4p and f i n a l l y  63. The third-order approximation 
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fo r  ui is then 

u i3  = u o + g  0 

In  the second case of inversion, i f  w e  a re  given a value fo r  the 

function S (u,) = mui/ (l+emui 

can proceed a s  follows. 

and w e  wish t o  inver t  it to  obtain uip w e  

We f i r s t  make a Taylor expansion about the point 

u (chosen as before with uo 6 uiD but now with S(uo) < S(ui)) and obtain 
0 

where now 

Analogous to  the case of the enu 

means of successive approximations t o  obtain 

inversion, w e  can inver t  t h i s  expansion by I 

Given S(ui) = snui/(l+cnui) w e  can readi ly  calculate  A,, then %, and f ina l ly  

elding the third-order approximation for  ui as  i n  equat on (60). 
b 3 9  

I n  the  special  case tha t  u = 0 or  uo= K (the ends of the table)  w e  can 
0 

simplify our or ig ina l  expansioqs f o r  cnui and S(u.) given i n  equations (55) 
1 

and (61), Recalling tha t  snO=O and enO=dn0=1, w e  obtain the third-order 

expressions 

= J2(1 - enui) - for  uo= 0 8 ui3  
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Before w e  s t a r t  the calculations w e  can see t h a t  our above successive 

approximations for  the Ai i n  the case of t he  mui inversion do not converge 

as u + 0. 

of a l l  of the expressions. 

This divergence is  due t o  the presence of snuo i n  the  denominators 
0 

Since the approximations a re  increasingly 

accurate toward the middle of the  tab les ,  it is clear  t ha t  w e  must devise an 

accurate (converging) approximation for  the  case u + O  i n  the cnui inversgon, 
0 

221 ~ To t h i s  end w e  make use of a d i r e c t  expansion for  cnu i n  powers of u-- e 

Forming the  quotient 

(69) 
1 - cnu E 

2 4  6 Rgu) * 2 - fu  d- u /8 - 3u /80 

and performing the  indicated long-division, w e  obtain 

8 7u * -  1280 + - - -  'tu) = 1 + cnu 4 320 9 * e o  0 ( 7 0 ) . ,  ' 

6 
U 

2 1 - cnu 53 U 

16f w e  drop a l l  terms higher than u2 w e  ge t  the f i r s t -order  approximation for  

u2 to  be i 

u : ~  = 4(1 - cnui)/(l 4- mui) a (71) 

Inser t ing t h i s  value i n  the two higher-order terms i n  equation (70) and 

solving fo r  the  resu l t ing  approximation, w e  obtain 
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When ui + 0 both s ides  of the l a s t  equation converge to  zero, so 

t h a t  w e  have a va l id  expression for  small ui i n  terms of the given cnui value, 

When u gets  la rger ,  t h i s  expression w i l l  become decreasingly accurate. On i 

the other hand, our or ig ina l  equations for  cnui inversion (equations (56) t o  

(60)) w i l l  become increasingly accurate. Clearly there  w i l l  be some cross- 

over point between the accuracies of the two inversion methods, and w e  w i l l  

need to  know t h i s  point i f  w e  a r e  t o  use both methods for  the f u l l  range of 

the tab le  values. To find t h i s  crossover point w e  must do some hand calcula- 

t ions ( fas te r  than wri t ing a small computer program i n  t h i s  case), We can 

select, for  example, an integral  value of bi and then take the accurate 

tab le  value for  the associated mui= cn(Kbi/90). 

cnui value usfng'both inversion methods. 

can then be compared with the 

a s  a function of the  or iginal  b tabulate the e r ror  Ab = Ibi - bi31 

both inversion methods. 

Next w e  can invert  t h i s  

These r e su l t s  for  ui3 (or ui2) 

value of ui= (Kbi/90). Thus w e  can 

for  i 

A semi-log plot  of these r e s u l t s  is  shown i n  

Figure 1 2 ,  Curve B is  the e r ror  plot  for  the or ig ina l  inversion method, 

while curve A is for  the second method for  small angles, From t h i s  p lo t  

w e  find the crossover value of b as  i 

b 5 18,2 . (73) e 

In  our calculations w e  use the  or ig ina l  cnui inversion method (equations 

(56) t o  (60)), for  bi > 18.2 and the second inversion method of equation (72) 

fo r  bi 5 18,2, 

when biz be" 

Note tha t  the maximum er ror  i n  u w i l l  then be about lom6 i 3  
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Figure 12, Numerical errors arising i n  two methods 

for the inversion of Jacobian e l l ipt ic  

f unct ions e 



88 

IO' 

ab  

I 0" 
0 20 40 . 60 



89 

I n  order t o  obtain more accurate inversions than the above u w e  13 ’ 
now add an i t e r a t i o n  process. After inverting cnui o r  S(u,) t o  obtain 

the approximate value of ui3 (or ui2) w e  turn around and calculate  the cor- 

responding value of cnu or S(u 1 using the accurate Lagrangian intespo- 

l a t i o n  rout ine and our or ig ina l  tables .  

13 13 
The resu l t ing  value can then be 

compared with the given value of cnu 

invert .  I f  Icnui3 

preset e r ro r  l imi ta t ion ,  then w e  can regard u 

ui for our purposes. 

o r  S(ui) that w e  i n i t i a l l y  t r i e d  t o  i 

cnuiI 5 E or l$(ui3) - S(u ) I  < E, where E is  some i -  

13 12  (or u ) as close enough t o  

-12 In  our work w e  eventually set E = 10 

However, i f  the e r ro r  is greater  than E w e  can make a new estimate 

fo r  u. by expanding cnui or S(ui) i n  a Taylor series about ui3 or  ui2# namely 
1 

cnu = mui3 - snu i 3  dnui3 (ui - ui31 + 0 0 0  (74) i 

and 

S(Ui) = W13) 4- ( 1 9 dnui3 mui3 ) (Ui * u 13 ) d- 0 0 0  0 (75) 

Solving each o f  these equation for  u i w e  obtain 

(cnu,, - emu,) 
ALJ I + 0 0 1 1  = * snu dnu i 4  i 3  13 13 

,and 

as the next approximations for the inversions of cnu 

(provided t h a t  ui3 o r  u are not zero). This procedure can be repeated 

over and over. again u n t i l  the desired accuracy is achieved., 

and S(ui) respectively i 

i 2  

I n  practice 

it  has not been necessary t o  use these corrections more than once, 
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Although the previous analysis should be complete and contain no 

-12 sources f o r  computational e r rors  (greater than 10 

arise, 

about 10 

conditions, Its e f f ec t s  were observed as  random discont inui t ies  i n  cer ta in  

p lo ts  t h a t  should have been smooth ones, 

) $  one f i n a l  error did 

This er ror  manifested i t s e l f  i n  the eighth decimal place a f t e r  

5 quarter-period calculations,  but only fox a few random i n i t i a l  

After many careful hand-calcula- 

t ions,  the e r ror  was tracked down t o  the random truncation e r ro r  i n  the 

13th decimal place by the I l l i a c  II computer! This seemingly ins igni f icant  

computer "fact-of-life" has overwhelming e f f ec t s  on the  cnui inversion pro- 

cess when cnu is  very close t o  one, 

Xi = Xa or Xb within about one p a r t  i n  10131 then the r a t i o  mui= Xi/Xa or 

cnu = X /X w i l l  be about 1.0 to  the  same accuracy, 

would sometimes call t h i s  exactly 1.000.,., while a t  other times it  would 

truncate i t  t o  0.999... = 1 - 

Zf under QE or QM 16 motion w e  have i 
N 

But the computer i b i  

( th i s  is a t  the l i m i t  of its accuracy). 

Again t h i s  may seem inconsequential, but when w e  look a t  the inversions 

of these s l i gh t ly  d i f fe ren t  mui values w e  f ind tha t  cn 

while cn-'(1.0 - 
-1 (1.0) = 0.00 

2 $0 suddenly w e  see the  cause of the  random 

discont inui t ies!  

To overcome t h i s  problemwe refer  back t o  equations (35) and (36) for  

X and Xb i n  terms of the i n i t i a l  coordinates Xi and ii. 
expressions and expanding them by means of the binomial theorem, w e  obtain 

Factoring these a 

respectively 

(78) 
2 'a = Xi(l+6)' = X i ( l  4- k6 - 36 /32 4- ...) 

and 

2 X,, = Xi(l-b)' = Xi( l  - + 56 132 - ...) , 
where 

4 6 = 2ii/P0Xi .=< 1 * 
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From equations (40a) and (41a) w e  obtain 

(81 1 
2 

enu = Xi/Xa = (1 - f 6  4- 36 132 - for  QE 

and 
2 cnu = Xb/Xi = (1 - f 8  4- 56 132 - for  QH 16 (82) 

Thus t o  f i rs t -order  i n  6 (fourth-order i n  Xi) w e  obtain for both QE and QH I 

motions 

enu 1 - 348 

Since our given value of cnu 

approximation t o  f i r s t -order  i n  6 is jus t i f i ed .  

differed from 1 , O  by about the above 

Note tha t  t h i s  value for 
i 

cnui requires u = 0 i n  our mui inversion routines,  

f o r  ui3 when uo= 0 w e  obtain 

Then using equation (669) 
0 

(for u = 01, (85) - 0 

Thus whenever 

(where cn(K/900) is the f i r s t  t ab le  entry for  b = 0.1)8 the value of ui3 

would be calculated 

the  regular inversion routines.  

from ( X  gi) using equation (85), thus bypassing 
I 

i' 

I). Piecewise caleulations 

L e t  us  now turn t o  the actual procedures for  the numerical calcula- 

t ions,  

choose fixed numerical values for  our two parameters p 

I n  order t o  l i m i t  the  amount of computations involved, w e  f i r s t  

and .rS namely 
0 
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= 0,037 and T = 6.0 (87 1 P O  

These a re  a r b i t r a r i l y  chosen values, but they w i l l  generate solutions which 

can be scaled (both i n  phase-space and i n  t i m e )  i n  order t o  yield solut ions 

for  other values of p 

parameters, o r  fo r  non-integrable equations which possess some constants 

of the motion (e,g, the energy), w e  would have to use d i f f e ren t  values for  

those parameters or constants of the  motion and calculate  the cor- 

responding solut ions,  

solutions t o  the equations could then be  obtained by p lo t t ing  the phase- 

space t r a j ec to r i e s  for  many d i f f e ren t  values of the parameters or  constants 

of the motion. 

could thus generate sets of "eigensurfaces" of solutions i n  phase-parameter 

and 7.. For more general equations with non-scaling 
0 

A complete representation of t he  s t ruc ture  of periodic 

Treating these parameters then a s  continuous var iables ,  w e  

23f  space-= ,, But for our equation (20) w e  need select only one value fo r  the 

parameters 

Since our numerical calculations w i l l  begin a t  t = O ,  it is  clear from 

our def in i t ion  of p ( t )  i n  equation (21) t ha t  for  the  f i r s t  quarter-period 

( ~ / 4  = 1,5) w e  w i l l  have p ( t )  = po > 0 and hence a quas i -e l l ip t ica l  (QE) 

motion. 

and hence a quasi-hyperbolic (QH I or QR If) motion. 

half-period of QE: motion, and so on f o r  as  long as w e  wish t o  calculate ,  

A simple index counter can be employed to keep t rack of the s ign  of p ( t )  as  

a function of the  number of quarter-periods of elapsed time. 

could have defined p ( t )  so t h a t  p(0) = -p 

our p ( t )  by a half-period i n  t i m e .  

Then for  the next half-period ( ~ 1 2  = 3.0) w e  w i l l  have p ( t )  = -Po .c 0 

Next w i l l  follow another 

Note tha t  w e  

instead of dp simply by sh i f t i ng  

Then the  motion would have begun as QR I 

o 0 

or  QH 11 motion for  the f i r s t  quarter-period. 

p ( t )  here 80 theat w e  w i l l  begin with QE motion a t  t P O e  

We have a r b i t r a r i l y  chosen 
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Before presenting a summary of the program logic for  the computer 

calculations,  it w i l l  be t o  our advantage t o  discuss i n  d e t a i l  a few 

typical solutions fo r  the possible motions. These w i l l  then i l lustrate  the 

various features of the computational techniques, L e t  us f i r s t  choose some 

set of i n i t i a l  coordinates (X 2i 
t 4 .  

input var iables ,  where Xi= ri cosei and ii= r sineio) Specifically,  l e t  

us choose t h i s  i n i t i a l  phase-space point t o  l i e  somewhere i n  the  f i r s t  

i n  our two-dimensional phase-space, for  iv 

(In our program w e  make use of the polar coordinates ri and Oi a s  

i 

quadraht and near the posi t ive X-axis, This choice is not necessary i n  the 

general cal culat  ions e 

Using the i n i t i a l  coordinates (X, ,%, 1 we can calculate the X-axis 
I 

intercept  X from the f i r s t  integral  for  a 

The r e su l t  for  

(The case when 

xj f 0 is 

Xi= 0 is discussed i n  the 

1. 

QE motion, given i n  equation (351, 

next sec t ion , )  Next, using 

equations (40c) and then (40,) w e  can compute the t i m n  it would take t o  go 

from t o  (x,,o>, namely 

Now i f  ta= 1.5 then the i n i t i a l  QE motion would ju s t  be completed a t  (Xa,O), 

I f ,  however, t C 1.5 then the motion will continue on beyond (below) the 

X-axis fo r  a t i m e  in terval  t = (lQ5 - ta) > 0, 
a 

To find the f i n a l  coordinates 1 
(when t = 1.5) w e  simply use (40~) end then (40,) and (40b). Thus 

XI = - & X2 snu dnul < 0 a 1  
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where 

u l =  KXat14O 0 

I f  instead ta > 1.5 then the  QE motion w i l l  f a l l  short  of (or above) the 

X-axis by the  t i m e  in te rva l  t - ( l e 5  - tal 0. With t a 0 w e  c lear ly  

have ul a 0 also,  

(sn(-u) = -snu; cn(-u) = cnu; dn(-u 

X1 > 0 and a l so  X1 > 0. 

equations (90a) and (gob), These coordinates, then, are simply a r e f l ec t ion  

1 1 
From the symmetry properties of the e l l i p t i c  functions 

= dnu) w e  see tha t  for  u1 0 w e  have 
(I 0 

The magnitudes of X and X1 are found by using 1 

i n  the X-axis of the coordinates of the motion for  an equal but pos i t ive  

in te rva l  of t Indeed, inspection of our or ig ina l  equation (20) readi ly  

reveals t ha t  it is invariant  under the time-reversed operation t =+ et, as 

w e l l  as under the  space r e f l ec t ion  operation X =+ -X, or  under both simul- 

1' 

taneously. This invariance follows from equation (20) plus the  symmetry 

property p( t )  = p(-t)  b u i l t  i n to  our per iodic  square-wave function i n  

equation (21 1 

Now t ha t  w e  have determined our phase-space coordinates (X,,%,) a t  the  

end of t h e  f i r s t  quarter-period, w e  can calculate  the next half-period of 

quasi-hyperbolic motion. From equations (36) and (37) w e  see tha t  it w i l l  

be e i the r  QH I o r  QH 11 motion depending on our new i n i t i a l  coordinates , 

(X 2 sa t i s fy ing  the  conditions: 1 9  I 

o r  

lili > ,/F xi  for  QH 11, motion. (92 , 1 

Note tha t  if lill = ,/s Xi then the  motion i o  parabolic (see the d i s -  

cussion of equation (38)). 
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s 

L e t  us assume f i r s t  t h a t  the motion is Q W  16. Para l le l ing  the QE 

calculat ions w e  f i r s t  f ind the intercept  % on t he  X - a x i s  

The t i m e  t o  go from (Xl , i l )  to (Xb,O,) would be 

I f  tb - 3,O then the QH I: motion would be completed a t  the point ('Xb90). 

But i f  tb < 3.0 then the motion w i l l  go beyond (above) the X-axis f o r  a 

t i m e  in te rva l  t2= ('3.0 - > 0, The f i n a l  coordinates (when t = 1.5 d- 3 0 = tb 

4 , s )  w i l l  thus be 

x2 = Xb/"nu2 V 0 

b 2 2 
x2 =: 

Xb snu2dnu2/en u2 -3 0 

where 

Similarly i f  tb > 3,Ch the  motion w i l l  f a l l  shor t  of (or below) the X-axis 

for  a negative t i m e  in te rva l  t %he f i n d  coordinates w i l l  s t i l l  be cal- 

eulated from the above equationsv but now X2 Q 0, 
2" 

* 

For the next half-period the motion w i l l  be QE again, The calcula- 

t ions  for (X3,k3) w i l l  take the same form as equatiobons ( 8 8 ) ,  (89 ) ,  and (90) 

except t h a t  (Xi$i) w i l l  be replaced by (X2,i2> and tha t  (from now on) w e  

must subtract  t from 3 , O  instead of 1.5, 

calculate  t - (3,O - tan)" 

w e  would obtain X3 > 0, 2, C 0 for  t 3 0 (or g3 V 0 for  t3 6 O ) ,  

( X 2 p i 2 )  had been i n  the fourth quadrant, a d i f f e ren t  r e s u l t  would be obtained: 

Thus i n  the present case w e  must a 

If Q ,i ) bad been in the  f i r s t  quadrant, then 3- 2 2  
I f  3 
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(X ,g ) would be i n  e i the r  the fourth o r  the th i rd  quadrant. 

t h i s  case i n  the  next sect ion of t h i s  appendix. 

We w i l l  r e tu rn  t o  3 3  

"D 

But f i r s t  l e t  us consider the  next half-period of quasi-hyperbolic 

motion t o  be QH II motion s t a r t i n g  from i n i t i a l  coordinates (X ) *  L e t  us 

fo r  the moment assume X3 3 0 and X 

requirement tha t  X2 > 0, z2 3 81, We proceed i n  a manner similar t o  the QE 
2 and QH 1 eases already discussed above. 

3O 3 
a 

< 0 (which required t > 0 p l u s  the  i n i t i a l  3 3 

First w e  calculate  the  eonstant e 

from the f i r s t  in tegra l  for  QM IH. tion, equation (37) : 

Notice tha t  the absolute value of the: ?-axis inbercept 2 w i l l  be given by e 

= ( %-I( p- X3/C) 3 0 
where as before 

f (u) = snu/(P + cnu) 

(As mentioned before it is convenient t o  tabulate  the function f(u)  for  

0 _ D -  u 6 3K/2 i n  order t o  f a c i l i t a t e  taking its inverse , )  

the  QM I1 motion would be completed at (0, ==lkcl)o 
the  motion w i l l  go beyond (or to the l e f t  s f )  the H-axis by a t i m e  in te rva l  

= (3,O - t which is posi t ive,  The f i n a l  eoordinates %or t h i s  motion 

I f  tc = 3.0 then 

I f  however t < 3.0 then 
C 

t4 c 

w i l l  be 
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0 2 
x4 = - e dnu4/(l %- cnu4 

where 

c t4 v - 
"4 - 

and where the minus signs have been chosen t o  

0 (99c) 

agree with QH II motion or ig i -  

nating i n  the  fourth quadrant (see the following seet ion of t h i s  appendix), 

I f  tc > 3,O the  motion w i l l  f a l l  shor t  (or t o  the r igh t )  of the k-axis for  a 

negative t i m e  in terval  t44" 

from the ab0ve equations, but now X4 > 0, 

The f ina l  coordinates will still be calculated 

E. 

Now tha t  w e  have discussed several  typical motions for  a par t icular  

set of i n i t i a l  coordinates, it is elear  t h a t  one problem remains t o  be solved. 

That problem is the unambiguous determination of ' for  the f ina l  coordi- 

nates of the QE, QM ID or  QH I36 mofAons or iginat ing i n  any a rb i t r a ry  quadrant 

of the phase-plane, 

The s i m p l e s t  way t o  ealeulate  the  f ina l  coordimates from any i n i t i a l  

coordinates is f i r s t  t o  calculate  the absolute values of a l l  quant i t ies  

(e,g, iieiD Itcla 1t41p IX411 and li41 f o r  the l a s t  ease discussed), 

w e  ean a t tach  the appropriate s igns,  

from a consideration of the general, properties of motion. 

Then 

These signs can be determined a p r i o r i  

Let us look a t  

QE motion f i r s t ,  

about the or ig in ,  eoncave inward (see equation (88 )., 

the  first o r  th i rd  quadrant (Lee, i f  Xigi 

towards the X-axis, with an intercept  X e 

This motion is described i n  eloekwise quas i -e l l ip t ic  arcs  

%us if (xi8ii) is in 

0 )  then the motion w i l l  be 

Thus the r e s u l t s  outl ined i n  a 
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equations (88 )  to (SO) w i l l  hold, That is, the  s ign  of X w i l l  equal the s ign  1 
of Xi# while the s ign  f t, w i l l  be equal or opposite t o  the s ign of ii 
according as  ltal 

the special  cases where (Xigii) is  on the &X-axis, then w e  w i l l  have 4 e 0 

fo r  xi > 0, and g1 > o for  xi Q 0 ,  

3 , O  (or 1,s i n  the f i r s t  s t e p  only) or It 6 < 3,0 ,  In 
a 

If (X 2,) is  i n  the second or  fourth quadrants (i.e. if X i i i  -c 0) then iP 

the motion w i l l  be i n  clockwise a res  away from the  X-axis, with an X-axis 

intercept  Xa now i n  pas t  t i m e ,  

t o  go from (X ,O )  on the axis  to  ( X i , i i ) .  

X-axis t o  the final point (X18$l) w i l l  be the  sum tl = (3,O 4- ltal). 

the t i m e  ' i t  would take t o  go from 

towards which the motion is  d i rec ted) ,  we can subtract  ltal from the t o t a l  

t i m e  Ta it would take fo r  a point t o  go from the X-axis i n i t i a l l y  to  the 

i-axis f ina l ly  under QE motion. 

Thus Ital is j u s t  the t i m e  it would have taken 

Therefore the t o t a l  t i m e  from the 

To get  
a 

X .  1 t o  the i -ax is  (i .e, the axis  

To find Ta w e  use equation (90a) and see 

tha t  fOr X1= 0 (on the  i - a i s  f ina l ly )  w e  must have enul= 0 or  u - \IPoXaTa= K, 1- 
From equation ( 8 8 )  it is clear t h a t  for  Xi= 0 (on the X - a x i s  i n i t i a l l y )  w e  

a have Xa= time T between axes under QE motion w i l l  be 

We can therefore eonelude tha t  the s ign  of X w i l l  be equal o r  opposite t o  

the  s ign of Xi c o r r e s p o ~ d i ~ g  to  (T - ltal> 3 3 . 8  OF (Ta - Ital) < 3.0. 
1 

The a 

s ign of 

goes beyond the  next quadrant, i .e, unless (2Ta - It I 
eases t h a t  (xi9ii is on the &-axis we see tha t  ltal = Ta above, s0 t h a t  

w i l l  generally remain the same as  the s ign of $, unless the motion 

I n  the special  

1 
e 3.0 ,  a 

t = (3 ,O + T l o  men fo r  i i .  a o w e  w i l l  generally have x1 < o (unless 1 a 1 

2T e S I O ,  i n  which case X 3 O ) ,  while the s ign  of X, w i l l  be equal or  

opposite to  the  s ign of Xi corresponding t o  T 
a 1 

V V > 3 .0  or T < 3.0 .  For Xi > 0 a a 
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4 
the  r e su l t s  for  the s ign of Xl w i l l  s t i l l  hold, but i n  general w e  now w i l l  

have X1 V 0 (unless 2Ta a 3,0, i n  which case X1 a 0), 
5 

Next le t  us consider QH 16 motion. This motion is described i n  counter- 

clockwise quasi-hyperbolic arcs  about the or ig in ,  concave outward (see equation 

(93)). Thus i f  i s  i n  the second or fourth quadrants ( i ,e,  i f  

b" Xiii a 0) then the motion w i l l  be towards the X-axis, with an intercept  X 

Thus the r e s u l t s  for the f i n a l  coordinates w i l l  be those given i n  equations 

to  (951, with the following s igns,  The sfgn of X2 w i l l  equal the  s ign  
b 4 

of Xi$ while the s ign of X w i l l  be equal or opposite t o  the s ign  of Xi cor- 

responding t o  1 tb I 3 3 0 or I t 1 Q 3 0 

X 

t o  the cha rac t e r i s t i c  s t r a igh t  l i nes  of the quasi-hyperbola. 

hand, i f  (Xi8ii) is in the f i r s t  o r  th i rd  quadrants (ieeo i f  Xi i i  > 0) pr- 

i f  it is on the AX-axis (the ki-axis is excluded by equation (91)) then the 

2 

There is  no possible s ign  change for  b 

(as there  is fo r  QE motion) s ince the QM I motion is outward and asymptotic 2 

On the other 

motion w i l l  be away from the X-axis, with the intercept  Xb now i n  past t i m e ,  

That is, ltbl w i l l  be the t i m e  it would take t o  go from on the X-axis 

t o  (Xi,ki)* 

point (X2,X2) w i l l  b e ' t a =  (3.0 4- l t b 1 9 .  

be equal t o  those of Xi and ki respectively ( i f  ii= 0, then k, 3 0 for  Xi P 

while i, a 0 fo r  Xi 

merefore  the to t a l  t i m e  t o  move from the X-axis to  the f i n a l  
0 

Clearly the signs of X2 and g2 w i l l  

0). 

F ina l ly  let us consider QM 116 motion. This motion is described i n  

clockwise arcs about the or ig in ,  concave outward (see equation ( 9 7 ) ) ,  with 

its intercept  ) now on the  i -ax is ,  Thus for in the  second or 

fourth quadrants the motion is towards the k-axiso 

case for  the QH ab motion, the s ign  of i w i l l  equal the  s ign of iti, while 

the s ign  of X4 w i l l  be equal or opposite t o  the  s ign  of Xi corresponding t o  

e 
Analogous t o  the Xi& 6 

4 
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ltcl > 3-8  or It,l C 3.0, Again i t  is impossible for  the sign of i4 to d i f f e r  

from the sign of Xi because the QH %I motion ares  outward towards i n f i n i t y ,  

I f  now (Xipgi) is i n  the Eirst or  th i rd  quadrants E i f  i t  is  on the Lieaxis 

(the LX-axis is excluded by equation Q92)), the lllgtion w i l l  be away from the 

i[-axis, and so It I w i l l  be the t i m e  t go from (Opkc) on the &axis to  

(Xi,iile 

(X ,i 1 w i l l  be t4= (3,O 8 lt,l 

to  those of X. and X. respect ively;  if Xi= 0, then X4 > 0 i f  Xi 9 0 while 

x 

c 

Thus the to= t i m e  to move from the f -ax is  t o  the  f i n a l  point 

Again, the signs of X4 and w i l l  be equal 4 4  4 
b # 

1 a 
b 

< 0 i f  Xi < 0, 4 
In  conclusion, it can be se n t h a t  the ealeulat ion of the f ina l  coordi- 

nates of the motion is bes t  done by computing only the  mamitudes of the 

necessary quant i t ies .  

ean be CQnstKucted. 

of the type of motion involved w i l l  then simply and easily fix the sipns of 

the  f ina l  coordinates. (Recall tha t  the motion is QE i f  p ( t )  9 0, and QH I 

ns (91) and (92 when p ( t )  < 0,) A summary of 

Then a logical  sign rout ine based on the above r e su l t s  

A s i m p l e  t e a t  of the product (Xiii) plus a determination 

a l l  these sign r e s u l t s  together with the piecewise computational s teps  

previously discussed are given i n  the beginning of the next appendix, 
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V. APPENDIX 9- PROGRAMS 

A.  Summary of piecewise calculations and sign routines 

Case I: ( ~ ~ 2 , )  > o 

2% 
Use: 

Set: Sign X1 = Sign Xi 

tl = (3.0 - Ita 1) in third equation above ; 
if tl < T a 9  

or Sign X1 = -Sign Xi if tl > Te ; 

or Sign 2, = -Sign i, if 0 tl c 2Ta 0 

s e t :  Sign il = Sign fii if tl < 0 or tl > 2Ta , 
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Case 11: X, - 0 
l. 

* 
U s e s  tl = 3,O i n  t h i rd  equation above ; 

sk 
Set: Sign X = Sign Xi i f  Ta > 3-0 1 
or Sign X1 = -8ign Xi i f  T < 3.0* 

a 

Subcase 1; Xi > 0 

sk 
i f  2T > 3.0 a Set: i1 < o 

dk 
or 6, > 0 i f  2Ta < 3.0 e 

Subcase 2: xi C 0 

Set: li, > o i f  2Ta 3 3,0*i .  
* 

or il 4= 0 i f  2Ta < 3.0 , 

Case 1136: X, = 0 

%Re 
Use: tl = (3.0 4- Ta) in t h i rd  equation above; 

Set: Sign XI = Sign Xi i f  T > 3.0 0 b $2 

0 e %k 
a 

or  Sign X1 = -Sign Xi i f  Ta < 3 , O  

Subcase 1: ii < 0 

dk 
Set: XI 0 i f  2Ta > 3.0 

%k 
or x1 > 0 i f  2Ta < 3,O . 

Subcase 2: i4 > 0 

* 
Set: x1 > 0 i f  2T 3 3.0 a 

or X1 < 0 i f  2Ta < 3.0* 
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case IV: (x,ii,> < o 
* 

Use: 

Set: Sign X1 = Sign Xi i f  tl < Ta , 
tl = (3,O -6- Ital> i n  th i rd  equation above ; 

o r  Sign X1 = -Sign Xi i f  tl > Ta ; 

Set:  Sign jil = Sign f i  i f  tl c 2Ta 9 

b 
i f  tl > 2Ta i OK Sign X1 = -Sign X 

* 
(Use 1,5 instead of 3,O 

- l a s t  quarter-period of 

be an integer  multiple 

for  the f i r s t  quarter-period of QR motion, plus the 

the motion i f  the t o t a l  period of the solut ion is t o  

of the  period 2). 

QH I Motion 
I n i t i a l  Tests: 

Case I: (xiii) > o 

U s e :  

Set: Sign X2 = Sign Xi 

and Sign 2, = Sign Xi 

t2 = (3,O -6- Itb I> i n  t h i rd  equation above ;. 

4 
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e 
Case XI: X, = 0 

U s e :  t2 = 3 . 0  i n  third equation above; 

Set: Sign X2 = Sign Xi 
e 

and X2 > 0 i f  Xi > 0 , 

Case 111: X; = 0 

Excluded (QH I1 Motion Only) e 

Case IV: ( x 4 i a )  < o 

U s e :  

Set: Sign X2 = Sign Xi 

and Sign X2 = -Sign Xi i f  t2 > 0 , 

t2 = (3 .O .,, I tb I) i n  third equation above ; 

4 4 

0 4 

or Sign X2 = Sign Xi i f  t2 < 0 * 

QH II Motion 
In i t ia l  Tests: 

0 

where f (u) = snu/(l + enu) 
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Case I: (xiii) > o 

U s e :  

Set: 

and Sign X4 = Sign X i .  

t4 = (3,O 4- lt,l) i n  fourth equation above; 

Sign ir, = Sign iri 

0 

Case 11: Xi = 0 

Excluded (QH I Motion Only). 

Case 111: X, = 0 

Use: t4 = 3 , O  i n  fourth equation above ; 

Set: Sign X4 = Sign Xi 
* 

and X4 > 0 i f  ii > 0 , 
o r  X4 < 0 i f  ii < 0 . 

Case N: (xiii) < o 

Use: t4 = (3 .O I t e {  ) i n  fourth equation above ; 

Set:: 

and Sign X4 = -Sign Xi i f  t4 > 0 , 

or  Sign X4 = Sign Xi i f  t4 < 0 e 

Sign 2, = Sign gi 
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B. 

Calling of l i b ra ry  subroutines for  input/output, Lagrangian 6-point 

interpolat ion,  arctangent, square root ,  cosine and s ine  functions; 

SYSETC, TILOOP, QUpS1,  QUAlf2: Calculation and storage of Jacobian e l l i p t i c  

function tables  (snu = SNARRY, cnu = CNMKY, dnu = DNARRY, and 

f (u)  snu/(l  -k cnu) = SBYC). 

Inputioutput controls, various counters ; 

EFPWA: 

ELOOP: 

HlLOOP: Preparation for  entry in to  QH 16 Notion Loop. 

H2LOOP; 

Conversion from input polar t o  Cartesian coordinates. 

Preparation f o r  entry in to  QE Motion Loop. 

Preparation for  entry in to  QH 11 Motion Loop. 

OP: Output options with f i n a l  coordinates, e . g .  conversion back to polar 

coordinates, calculation of special  functions such as  At& Ar, and 

the r a t i o  rl/re = RUCRIN. 

Subroutines 

ELLIP: Calculations for  QE Motion. 

WPl: Calculations for  QW I Motion. 

HYP2:: Calculations for  QH %I Motion, 

NVERSln cnu = C N N Y  inversion (both methods). 

NVEBs2: f (u)  = SBYC inversion. 

LOOKUP, LKAUX, AUXLK: Preparation of data  for  using the l i b ra ry  subroutine 

for  the six-point Lagrangian interpolat ion of the tables  (i.e. fo r  the 

d i r e c t  lookup of off- table  values), 



107 

SIGMA: Final coordinate s ign  rout ine for  QE Motion. 

SI6NlA: Final  coordinate s ign  routine for  QH I Motion. 

SIGM2A, Final coordinate s ign  rout ine for  QH II Motion. 

S"%;I[cAL: Special subroutine t o  calculate the s t a t i s t i c a l  properties of 

cer ta in  functions (e,g, RUCIBZN) for  large numbers of solut ions.  

IRDtMs Counter routine t o  allow recycling of calculations for  m u l t i p l e s  

m of the basic  mapping period no 

XPEBM:: The X-coordinate of the point t o  be used as the or ig in  of the 

polar coordinates 

XIIPERM:: The %-coordinate of the point t o  be used as the o r ig in  of the 

polar coordinates 

,, AMJ%N: The semi-major axes of two ellipses which form the 

outer  and inner boundaries respectively of the ( e l l i p t i c a l )  annular 

region under study. 

ECOW, ECIN: The eccen t r i c i t i e s  of these two (outer and inner, 

%eSpeCtiVely bounding ellipses. 

m O ~ r  The semi-major axis a 

phase-space being mapped. 

corresponding t o  the i n i t i a l  point i n  
0 

:: 

RADFIM: 

PBIWs 

An increment i n  a 

The f i n a l  a. i n  the desired series of a 

i f  a regular series of a. values is  desired. 
0 

values (may equal AMJOR). 
0 

The or ig ina l  angle 6 corresponding t o  the i n i t i a l  point i n  phase- 
0 

space being mapped e 

DELPHI: An increment i n  9 i f  a regular series of go values is desired.  

corresponding t o  the i n i t i a l  point i n  

0 

:: The fixed eccent r ic i ty  e 
0 

phase-space being mapped. 
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X U :  The maximum value of X which a f i n a l  coordinate is allowed t o  a t ta in .  

The integer number of periods of a of t he  basic  mapping (printout 

every N periods), 

The integer number of multiples of the bas ic  period N (M l i n e s  of 

printout  of N periods apiece). 

The number of incremented values for eo (the number of times DELPHI is  

added for  a given ao; DELRaD i s  controlled by RADFXN). 

M l 1 :  The running counter for  the  number of multiples m of the  basic  

period n, 

IN: 

r 

The r a t i o  of the  mapped radius r1 a t  the angle 8 t o  the  radius 

s f  a standard e l l i p se  (specified by AMJOR and EGCXN) a t  the same 

1 

e 

1" e 

LABGEGs The r a t i o  of the  mapped radius =rl t o  the  or ig ina l  radius  roe 

F: ~ o s e r v a  ge function = gel-eo), 

S U U S  &ser@s Ar function = (rl-rO)- 

he mapped radius r about (XPEaM, XDPlRM). 1 
PHI: The mapped angle 8 about (XPERM, XDPERM). 1 
XF: The mapped X-coordinate X1, 

XDF: The mapped k-coordinate 

Q n  

1" 
The running counter for  the  number of increments P i n  t he  i n i t i a l  

angle e 0 

0 
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Y 

_ _  - READ 
L A G 6  
A T A N l  
SQR 1 
cos 1 
SIN1 
SY SETC 
* 
* I40 PAGE COUNT. 
* M2 'LOOPS' 0 

* Mb F I X E D  P O I N T  NUMBER9 'N'o 
* 145 ORBITSt ' M @ o  

* M6 'P'. m---- 
* ( J a r  

0 M8 USED ONCE ONLY9 TO START OFF-AXIS I N  E L L I P o  
* M 9  SAME AS H5 (Clllr BUT USED I N  CALCULATIONSo 
* M 1 0  SAME AS H6 ( P I ,  BUT USED I N  CALCULATIONSo 

.I-___ * 
- - __._ . - 

0 M 1 1  OUTPUT COUNT e 

CALL SYSETC 
DECQL r, IGNORE* 
CAD K 
D I V  900. 
STR SCALE 
CAD 19939 
STU SNARR Y TABLE OF S N t  CNt  AND ON, 

ADD 10 
STR CNARRY SET I N I T I A L  TABLE VALUES 

S f R  DNARRY 
CAD P SZ 

CALL S Q R l  
STR RPSZ 

* REO RED R t  0 RED R t D  REO RED R E D  
CSM 0 , 9 0 0  LOOP COUNTER. 
LFR 2 t Q  F2 = Q = QFbST 
CAD QFAST I 

P P Y  F 1  
STU F 3  - -_- 
S F R  3,Q2 

____ - 

PPY F3  ----- 
STU Q4 Q**4 = 04 
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- __ __ 
CPY F1  
CPY QFASlT 
STU Q9 Q+*9 = Q9 

CPY F 1  
YPY F3 
STU 012 W e 1 2  = 012 

PDD 06 
ADD 0 2  

POD l e  412+46+42+1 
STR ca GOES TO CQ 

CAD 09 

ADD QFAST 
ADD 10 9 3,2048 09+Qb+Q+ 1 / 2 
STR A Q .  GOES TO AQ 
LFR 3 ,R INCR 

TLOOP CAT RFAST 
CALL C U S l  
YPY 0 .Q 
STU F5 TO F5 
CAD RFAST 
CIPY 6 e  
CALL casi 
CPY Q9 09  
STU F6 TO F6 
CAD RFAST 
UPY 4.  
CALL COS1 
)rPY Q4 * Q4 
ADO iat3,204a 112 

SUB F 5  -QCOS f R I  NCR )-Q9+COS (6+R1 NCR) 
SUB F 6  
YPY ca 
STR 8HOCQ TO BNQCU 
CAD RFAST 
PPY 5. 

CALL S I N 1  
PPY 96 1) Q4 
STR F 5  . T O  F5 
CAD RFAST 
PPY 3 ,  

, 
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CALL S I N 1  
PPY Q2 * 92 

CAD RFAST 
PPY 7 0  
CALL S I N l  
CPY Q12 *Q12 
STU F7 TO F7 
CAD RFAST 
CALL  S I N l  
bDD F5 Q 6 S I N (  5 * R I  NCR) 
SUB. F6 - 0 2 S f N ( 3 * R I N C R )  
SUB F7 - 1 2 S I  N 17+R INCR 1 
MPY A 9  * (09+04+~+1/2) 

c I V  BN9CQ BY 0 4 C O S ( 4 * R I N C R ) + l / Z -  
STR SN&RRY+H0+901 E L L I P T I C  SINE, 

MPY FO 1 - I S N U * S I h ( R I N C R I  1 
STR F5 - 0 6 S I N ( S R I N C R )  ROOTED 

SUB FS 
CALL S Q R l  

CAD 2. 2 - Q6SINIS.RINCR) * 1 /2  
STR CNARRY+H0+901 E L L I P T I C  COSINE, 

SUB F5 ROOTED 
c IV. 2, 
CALL SQRl  

ZTR DNARRY+WO+901 E L L I P T I C  TANGENT, 
CAD R INCR 
1sc RFAST INCREHEYT R o o ,  

C J U  HO,TLOOP AND LOOP, 
CSM O n 9 0 1  

CAM 1 s  SNA RRY 
C A M  2,CNARRY 

QUA01  CAD 2.1. 
PDD 1. 
L I D  1 9 1 1  

STR SBYC+M0+90 1 
C J U  0,QlJADl 

CSM 01801 
_. C A M  l r S N A R R Y + 8 9 9  - -  
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. 
- 

__ CAM 2rCNARRY+899 
QUA02 C S B  zt r 

P O 0  * 
V I 0  1 9 9  

STR SBYC+MO+ 1702 

SBM l r l  
SRM 2 9 1  

CJU OIQUAOZ 
F IL 

4 M A I N  PROGRAM --- I P T I C  ( F I 1  XED ( P I O I N T .  IR)ED---  

ff L O C P S  - - O D I F I F R  2 

EFPR3 C AM 1 s R E A D I N  

4 

4 

CALL R E A D  
CAM 1 sCTOFF 
CALL READ 
CAM 1 s P R I N T N  
CALL P R I N T  
C A M  1 sCTOFFP 
C A L L  P R I N T  
csn 0141 PAGE COUNTER, 
LFR S,SET!.JP 
CR N 4.12 

CSM 5rM5 TOTAL NUMBER OF ORBITS, 
CSM 4 FIXED P O I N T  NUMBER, 

CAM 7 s  1 SET I N I T I A L  VALUE OF Q o  

SFR 5rSETt.JP SAVE I N P U T  COUNTERS. 

CSM , 9 r W 5  
CAM l O s M 6  

CAM 11 SET I N I T I A L  VALUE OF Mfb) 
SFR 6 9 COUNT 3rCOUNT = 0 .  
C A D  1 5 s  3 s  
STU AVRUC 
STU RMRUC 

STU AVG 
STU RWG 

EFPRB CAM 19HEAD 
- __ CAB L P R I N T  
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- __ - CAD ?ti INP __ 
STR PHI I N  

FFPRA CALL RDUM 
QECQL AH JOR , ECCEN, P H I  I N  R A D I N  
CAD P H I I N  
CIV 180 . 
STR F3 
CALL C O S 1  
V P Y  RW IN 
P O 0  XPERH 
STR X I N P  
STR X IN 

STR x INS 
STR XF 
CAD F3 
CALL S I N 1  
MPY RAD I N  
bo0 XOPERH 
STR X D I N P  
STR XOIN 

STR RUCRIN 
CAD RADIN 

STR RAD 
CAD P H I  I N  

STR P P I  
CAN 1 *OUT 

C A I  L PRINT 
CSH LOOPS e 1 
CSH 8 9 1  FIRST E L L I P T I C  ENTRY. 

ELOOP CALL E L L I P A  
C A l  L OP 
CJU LOOPS 1-ELOOP 

- csn LOOPS,2 _ _  
C A M  8 
CAD X - 
C A V  XMAX 
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TP CXHAX P R I N T  X I  XO, THEN READ IN NEW 
_ _  -_ - CAD X 

C I V  2. 
CALL S Q R l  s 

YPY F3 
C A V  xc  
TN H2LOOP 

H l L O O P  CALL H Y P l A  
CALL OP 

i k  

C JU L Q O P S I H l L Q O P  
csn LOOPS, 2 
TRA €COOP 

HZLOOP CALL H Y P Z A  
CALL 0 9  

I 

C J U  CCOPS,HZLOOP .___ 
cslilr LOOP s ,2 
TRA ELOOP 

c z  JUMP I F  ON SECOND LOOP TO OUTP 
CAE XZERO 
Z T R  X I N  - -- 
cao XCZERO 

OP SFR 4,OPBSS SAVE RE TURPI. 

- STR XC I N  -____ .. 

CAD T E Y 4  
P sc T 
CJU 4 r O P X  JUMP IF NO CUTPUT IS DESIRED.  
LDM 4 ,SETUP REsErOUTPUT CoUNTER. ._ - 

CAD X 
SUB XPERM __- 
STR DELX 
CAD xc 
SUB XDPERM 
Z T R  DELXD --- __ 
CAD RAC 
STR RADOLD .- 
C A D  Pk I 
S T R  P)! IOLD .- .-- 
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CAD DELX 
- PPY F 1  

STR FG 
CAD OELXD 
WPY fl 
POD FO 
CALL SQRl  
STR RAD 
CAD DELXD 
C I V  DELX 
CALL ATANl 
PPY 180. 
C I V  P I  
STR P H I  
CALL P H I S T  
LFR 6,COUNT 
bDM 1 1 9 1  INCREMENT RUNNING COUNTER ( I r l l l )  
S F R  6 9 COUNT 
C A L L  RCUf4 
DECQL AHJOR,ECCENTPHI~RAONEW 
C A D  RAD 

-.___ 

C I V  - RADNEW 
STR RUCRIN 
4 s c  AVRUC 
C A D  RLCRIN 
MPY F 1  
bSC RHRUC 

CALL ROUM 

CALL ROUM 

CAD RAD 
ROUT SUB 

TU O P G .  

CFCOL A Y ~ l J T ~ F C f l U T ~ P H I . ~ U T  

CECQL AMJ I N  , EC IN, PHI r R I N  - 

- ___- 

C A D  1 5 9 3 s  
STU LARGEG 

-_ - ___ 
TRA OPF 

OPG CAD RAD 

SUB RCUT 
C A V  1 5 r 3 t  
STR F 2  
CAD ROUT 

* 
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SUB R IN __ . - 

C A V  15.3. 
S T R  F 3  
PPY F2 
PPY 2 -  
STR F7 
CAD RPO 

SU6 R IN 
C A V  15r3. 
ADD F2 
SUB F3 
C I V  F7 
STR FO 
CAD R A D  
SUB ROUT 
FPY FO 
STR LARGFG 

OPF C A D  PHI 

S U B  PP I O L D  
TP DPD 

PDD 360 .  
OPD STR F 

CAD RPO 
SUB RAOOLD - ___ 

STR SCALtG 
CAD X / 

S T R  X F  
C A D  x c  

STR XCF __ 
CAD LARGEG 

b S C  AVG 
C A D  LARGEG \ 

__ PPY F 1  _ _  - 
LSC RHG 
JNM 0,OPE - 
CAM 1rWEAD HEAD TOP OF PAGE- 

- - -  CALL P R I N T  - 

i- N 
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OUTPUT PAGE COUNTER, 
OPE CAM l r O U T  , - _. - CALL P R I N T  

A O M  012 UPDATE PAGE COUNTER, 
CAD X 
EAV xckx - I .: 
TP c x M a x  P R I R T  X ,  XD, THEN READ I N  N E W  C 

.. 

C J Z  5pOPA 

LOM taoPs,oPBss RESTORE LOOP COUNTER, 
JLH 31 9 E X I T ,  

OPX t D M  3 tope ss  RESTORE RETURN. 

OPA __--- L F R  6,COUNT -. _____- 

C A C  AVRUC 
C I b  w9. 

STR AVGR 
PPY FO 
STR F3 
CAD RMRUC 

C A& S Q R l  
c I V  M90 

S T R  RMSR 
PPY FO 
SUB F3 

STR SIGMAR 
can A V G  

c a u  s a R i  

C I V  M 9 o -  
STR AVGG . 

PPY FO 
S T R  F3 
CAD RP4G 

- - ~ -  -- 
c i v  H9o 
CALL SUR1 
5TR RHSG 
PPY FO 
SUB F3 
CALL  S Q R l  - 
STR SIGHAG 
C A!!!- 1,SHOUTl 
CALL P R I N T  
bOM 0.8 INCREMENT PAGE COUNTER. . 
CAD 15.3,  
STU AVRUC _______ -- 
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JNM 8.0PB 
T R A  SqXCAL 

OPB CAD D U D  
CPY D E L P H I  
TU OPH 
CAD DELRAO 

-- dSC AMJOR 
OPH . CAD D E L P H I  

P S C  PPIIN 
L F R  SrSETUP 

7 s  1 __- ~ 

4 0 H  
SFR 5rSETI.JP 
LFR 6rCOUNT 
C A M  11 
S F R  6eCOUNT 
caM l r S K I P  4 

CALL P R I N T  

T R A  EFPRA 

STR X I N  
STR X I N S  
CAD XD ’ 
C f R  XGIN ___- - 
STR XC INS 
TRA OPX 

--.6DM Or3 INCREMENT PAGE COUNTER-. 

OPC CAD X 

OPBSS O S S  1 
__I_ - 

(r 

ELI I P A  SFR 4 a L B S S  SAVE RETURN- __ - 

SFR 
C J Z  8 , a L I P G  
C J Z  L G O P S r E L L I P C  

ELL I PG CAD XI& - 
HPY XO I N  
STR FO -. - 
C A V  1 5 9 3 ~  
L I D  FO .- 

TOR E L L I P E  

5 ,  ELL B SS+ 1 
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- . -  

T R A  E L L I P F  
ELL I PE C S 8  1. - -  

F I L I P F  STR WCTIfJN 
CAD X I N  

PPY F1 
PPY F 1  
PtPY F1 I 

STR F7 
E L L I P B  CAD X O I N  

PPY F 1  
PPY 20 
C I V  P S f  
STR DELONE 
C I V  F7 
STR OELTWO 

SUB RERROR 
TP E L C i P O  

CAD OELTWO APPROXSo FOR WHEN XZERO IS N E A R  
8 I V  4. 

POD 10 
P P Y  X IN 

STR XZERO 
CALL SIGNEA 

CAO DELTWO 

aoc 10 
STR TSfCNU 
C A D  DEL? WO 
C I V  20 
CALL SQRl 
S I R  U 
T R A  E L L I P R  

ELL I PQ C A D  DELONE 
P O 0  F7 
CALL SQRl 

kDV 4 0  

1 

CALL S C R l  
STR XZERO X AT ABCISSA 

4 

CALL S I G N E A  
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- -  CAD XZERQ - . ._ ---_ _ _  - - 
Y I D  X I N  
STR TSBCNU 

I) 

CALl NVERS 1 
* 

E L L I P R  CAD 158 3P 
STU XDZERO 
C A D  RPSZ 

PPY XZERO 

C A V  15.3, 
STR TZERO . TIME TU ABCISSA 

I) 

MPY HCT ION 
sue t B Y 4  
STN T NEW T I M E  

I) 

FLI I P C  C A D  1 
PPY XZERO 
STR F7 
CAD R P S Z  

PPY F 7  
STR T F S T U  

CALL L C a K U  P - 
CAD CNU 

HPY XZERQ 
STR X NEW X 

CALL SIGNEB 

I) 

I) 

---_____ 
I) 

* 
I) 

I) 

----_____ 

CAD RPSZ 
P P Y  XZERO _I 

FJPY F1 
PPY SNU 
IWPY Dh'U 

STN x c  NEW XD 
-- 
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C A D  FnCT 
SAP WCTION 

J Z M  8 ,  E L L  I P H  
JUM LCOQS 8 ELL I P D  

ELL I PH CAD X I N S  - 
YPY XCINS 
TP E l  I ,  I P D  
C A D  P S I  

E L I  IPD LFR 4,ELLBSS DELETE E L L I P D  LABEL FOR PH ( P R I P  
LFR 5 r E L L B S S + 1  
J L H  3 r L  E X I T  - 

ELLBSS @ S S  2 
* 

ASSIGN OELONE,DELTWO 

RERROR CEC 1 -0E-07 
H Y P l A  SFR 4 r H Y l B S S  SAVE R E T U R N .  - 

SFR S r H Y l B S S + l  
C J Z  LUOPS 9 HYP 1C - 
CAD X I N  
YPY X O  I N  
STR FC 
C A V  15.3. _._- 

STR MOTION 
C A D  X IN. 

YPY F 1  

t IO Fa 

I 

PPY F 1  -_ 
CPY F1  
S T R  F7 -. - __ __ 

H Y P l B  C A D  XCIN  
PPY F 1  
PPY 2, 
h D L  PSZ _ _ _ . ~ - - .  - 
STR DELONE 
h0V F 7  - _. ___ ._ 
STR DELTWO 

SUB RERROR 
TP HYPlQ ___- - 

.-l._ - -- - 
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APPROXSe FOR WHEN X L E R O  IS NEAR 
--I- 

-- C A D  DELTklO 
NDV 40 

P O D  10 
STR TSTCNU 

. CPY X I N  
STR XZERO 

C A L L  S I G N l A  
C A D  OELTWO 
C I V  2. 

______ C A L L  S Q R l  
STR U 
TRA H Y P l R  

H Y P l Q  C A O  DELONE 
-- 600- F7 

C A V  1 5 t 3 r  
C A L L  S Q R l  
C A L L  S C R l  
STR XLERO X AT ABCISS A 

C A L L  S I G N L A  
C A D  XZERO 

0 

___-- C I V  
STR TSTCNU 

(c 

C A L L  N V E R S l  
* 

H Y P l R  C A C  1 5 9 3 9  
S T U  XGZERO 
C A D  R P S Z  

NPY XZERO __ __ 
V I 0  U 

CAV L 5 t 3 r  
STR TZERO T I H E  TO A B C I S S A  

__-- 

PPY MCTION -- 
P D C  TBY4 
STR T 

H Y P l C  CAD T 

YPY XZERO 

C A D  RPSZ 
_ _  I T R  F 7  - 

E 
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- __ 
PPY F7 
STR TESTU 

* 
C A L L  LQOKUP 

* .  

C A C  XZERO 
C I V  CNU 
STR X N E W  X 

____-. * 
C A L L  S IGNlB 

* 
* 
* 

_ _  --___ C A D  XZERO 
PPY Fl 
PPY SNU 

P P Y  DNU 
STR F l  
C A D  RPSZ 
YPY F7 

c I V  F 1  
STR XD NEW XD 

* - 
C A L L  S I G N l C  
CAO H l O C T  
S A M  M O T I O N  

* 

LFR 4rHYlBSS RESTORE RETURN- 
L F R  5 VHYlBSS+l  
JI ,H 311 E X I T  - 

H Y l B S S  B S S  2 

HYP2A SFR 4 t H Y 2 B S S  SAVE RETURN. 
* 

SFR H Y Z B S S + l  ___ - 

C A C  X I N  
MPY X O  I N  
STR FO 
C A V  l 5 r 3 t  

- -  V I 0  FO 
STR NCTION 

C J Z  %PS. HY P2C 

_. .- C A D  XIN 
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YPY F1 
CPY F1 
PPY F 1  - ._ 
PPY 4, 

- S T N  F7 
CAD X D I N  1 

CPY F l  
CPY 8 ,  
C I V  PSZ 

__ P C G  F7 
C A V  1 5 9 3 9  
CALL S C R l  
CALL SQRl 
STR F6 F6 = A 
CAE F7 
PPY PSZ 
C I V  a. 
STR F 7  

H Y P 2 8  CAD X C  I N  

CPY F 1  
PO0 F 7  
C A V  1 5 9 3 9  
3 CALL 

STR XDZERO XD AT OROINATE 

CALL SIGN2A 
CAD 2. 

PPY X I N  
C I V  Fb 
STR TSTSBC 
C A V  1 5 9 3 9  
CALL N L E R S 2  

* 

CALL saRx 

* 
* -- _I____ 

CAD 1 5 r 3 r  
STU XZERO 
CAD RPSZ 

V I 0  U 
c r v  F6 - 
STR TZERO TIME TO OROINATE 

P P Y  MOT I O N  
ADD T @ Y 4  
STR T 
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P 

-~ ! __ 
HYPZC c a o  RPSZ 

. -~ P P Y  T 
PPY F6 
STR TESTU 

__- - 

---____ CALL CCOKUP 

-___ CAI? CNU . 
* 

-__- C A D  2. 
CALL S 6 R 1 '  

PPY F7 
-__-- 

STR F7 
C A D  SNU 

-____ PPY - F6 
C I V  F7 

_ _  X NEW X ST!! . ________I __-_ * 
CALL S I G N 2 B  

* 
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NYERSL5FR 4,NVlBSS SAVE RETURN. 
STR F2 F2  = TEST CNU 
C A M  0 
C A M  1 (CNARRY. M 1  = CNARRY 
LDM 4 t C O V A L  
c SH 4 r H 4  

C A V  1111 
TP N1B 
PGM 01 1 
TRA N I A  

CAD 1. B E G I N  APPROX.  FOR S M A ~ A ~ L ~  

______. -- 

N1A C A D  F 2  ___-_________ - 

N1B SEW 0 , 1 8 3  
____ JPM O t N l C  

AC C U R AC Y C R C S SO V E R ? T U K A T E % ?  

SUB F 2  
STR F 3  
C A D  1. 
PO0 F 2  
VI0  F3 
STR F3 
F PY F3 
MPY F3 

P O D  F3 

-.____ 

--NDV 5. ___I____ 

1 __ 4 D E  ___ 
I caLL s a R i  

T R A  N1D 

S B M  0 i 900 
JUM OtNlE 
POM 0,900 ___..-_ 

C A D  F 2  
STR F3 
CAD 2. 
c a u  s c R i  -____ __ - 
PPY F3 

N1C. bDH 0 r 183. 2 N D  ORDER I T E R A T I O N  FOR REST O F  

SUB K 
STN FO 
CAD FC 
T R A  N1D 

N l E  A O M  01900 ___ 

C A D  HO-1.- . 

C I V  9co0 
YPY K 
S T R  uo 
CAE CNARRY +MO- 1 -_ 
PPY F1 

- PPY F 1  _ _  
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- -  
STR F3 
CAC SNARRY+MO-1 

YPY DhARRY+MO-1 
STR F2 F2 = S N ( 1 )  * D N ( 1 )  

SUB CNARR Y +EO- 1 
&DV F 2  
STR FO 

- - CPY FO 
YPY F3 

__ NDV F 2  
PPY l C 1 3 ~ 2 0 4 8  
P D C  FO 
PI30 uo 

STR TESTU 

CAE GNU 

_____ C A C  TSTCNU 

__- 

NlD STR-  U 

CALL LOOKUP - 

SUB TSTCNU 
STR DELCNU 
C A V  15.3,  
SUB ERROR 

T Z N  N l X  
C J Z  4 t E F P R 3  

CAD DELCNU _-________ 
C I V  SML, 

C I V  DpiU 

T R A  N 1 D  
NlX L F R  4,NVlBSS 

____._ 
JLH 3 t t  E X I T  

* 
P S S  IGN OELCNUIDELSBC - ._ - 

ERROR CEC - 1 .OE- 12- - - . __I ._ .. .- __ - ____ 
NVERS2 SFR 4 r N V 2 B  SS s A VERT i UR N . 

SFR 5 r N V Z B S S + l  SAVE F5 
S F R  6 v N V Z B S S t 2  SAVE F6 
SFR 7 r N V 2 B S S  +3- AVE F ?  __ - - - 
STR FS f 5  = TEST SN/l+CN 
CAV SBYC +901 _ _  
T P  N 2 B  I F  SBYC I S  I N  SECONO QUADRANl. 
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e 

CAM 0 
- -. . CAM 1, SBYC SBYC IS P R I M E  V A L U E D .  

N2C CAO 1?1? 

P D M  011 
TRA N2C 

SRM 09183 
___ - J P H  0 ,NZE 

C A D  F 5  B E G I N  APPROX.  F O R  S M A L L  TABLE V f  
STR F2 
P P Y  F2 

N2G C A M  22 80 - - -. - ._ .___.___ _- 

_ _  
T R A  N2X 

N 7 F  P O M  0,183 2N0 ORDER I T E R A T I O N  FOR R E S T O F -  

PNM 0.8190 
CRM 011 

€OM 0 , 4 5 0  
J U M  O l N 2  f - 

CAM 0 1 M 2  
C A D  F5  
Y P Y  2 w- 

SUB 1. 
C A L L  S Q R l  
SUB 1. 
S T R  F3 
C A C  2. 

.~ 

C A L L  S Q R l  
C P Y  F3 
POD K 

_.___ . 

T R A  N2X 

- N 2 F  G l l M  O 1 M 2  -.- 

C A G  M 1-2 

- - -- - 
S T R  F 2  
C A V  FS ..- 
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V I 0  DNARRY+MO-1 
T R A  N2A 

C A C  l r l r  
C A V  F5  
TN 820 

STR F6 
C S B  CNARRY-M0+901 
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N2A STK F7 
V I D  F 3  

j c v  
NDV 4, 

~- S U B  __ ... .. E R R O R  _--__ * . ._ . ._ 

- 
LFR 7 ,  NVZRSS+3 RESTORE F 7  

- .  ___ - -. - . _ d L H  L-.-.--. E X I T  . - - _ _  . 

+ N V Z ~ S S  e s s  4 

T Z P  I KP6 
C A M  0 

-_LQQKyP SEE- _-_-4rLKPBSS SAVE-BETUSN. __.__- - ^ _ _ _  . -- 
MO = 

E *  F? TRANSFF R I F  T E S T U  * G  
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__- - - - _- 
LKP2 S U B  K 

TN I K P 3  

________ JNM 4 r L K X 3  JUMP I F  M4 IS I N  RANGE, -_ 
C A M  4 ,SNARRY+894  M4 .Gko 8 9 8 ,  END O F  TABLE- 

- . CSM___r6-- 7 ___ .. 

L K X 1  CAE 411 ,  S E T  E N D  OF T A D L F S  V A L U ~ S .  
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- _  A X t K 3  -=-L M O - I S  EVEN, 
JPM O g A X L K l  JUMP TO E X I T  I F  Mi3 = 9 = 4 = *  

CAD SNU MO = 2 = 6 = 

--_ -___ CAD CNU 
STN CNU 

T R A  A X L K l  TRANSFER T O  EXIT,  
S I G N E A  PPY X INS 
- __ __ - IP-_.SIG! F~ A +2 ~- . ____ _______ 

C A C  XZERO 

STN XZERO 
- - J L H 3 , - .  ~ _ _ _ _  - - 
SIGNER C A D  x I N S  

VPY XDINS - --___ _ _  
T N  SEBA 
CAE X 
PPY X I N S  

C A C  X 
STN X 

SFBA C A D  K 

______- ~ TP SEBBX ___ .- 

SEBBX J L H  3 r ?  E X I T -  

C I V  XZERO 
_-- -~ 

C I V  R Ps-2 
- C A V  1 5 r 3 r  -- __ 

SUR TZERO 
STR P S I  
JZH LCOPSISEBC 
C A V  TBY4 F I R S T  LOOP, 

CAD X I N S  -___ . 

PPY X 
TN SEBBX 

SEBE CAD X 
-- ST& X 

_-___. -I_ . _ _ _  
SEBF TP SEBD 

_______ .- .__.- - - - . _- 
T R A  SEBBX 

YPY X 
T P  SEBBX - -  

. T R A  SEBE 

- _  T R A  SEBF 

SEBD - ____ CAD X I N S  -- I_- - - - ____ - _. 

SEBC C A V  3 -  - SECONO L O O E L  _____________ 
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S I G N E L  d 4G __ X I N S 
PPY XDINS 
TN AUXE 
CAE TZERO 
JZ M CCOPS s SECA ___ -__ 
C A V  T 8 Y 4  

SECE TN SECE - --_ 
AUXE C A C  XD 

PPY X C I N S  
TP SECCX 

_~ _- - SECCX JCH 3 9 8  E X I T -  
SECB C A C  X C  

_____ ~- - 

PPY XOIIUS 
TZN SECCX 

T R A  SECD __  
-___-I. 

SECA C A V  3 -  

S I G N l A .  EQUL S I G N E L - -  _____._ .~ . .. - _ _  
T R A  SECE 

S I G N 1 6  PPY X I N S  

TP S I GN 18+2^ 
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- .. -. 

S 1 A  C A V  3, 

-- SIGN2A PPY XC INS - - 
T P  S I G N 2 A + 2  

. ___ - _. .___ - _-__ 
CAD XCZERO 
STN XCZERO . 

- ._APY.. X I2 I N S _. .. . ._ .. -. . 

TP AUX2 

TP S Z C X  - -  
S2D CAC X 

5 TN X 
s 2 c x  ._ 3CH 31,--- _____ E X I T .  - . _.__ 

5 2 8  C A C  X 

. __ _- -. .. ___. YPY- X I N S  ____ 
TZN s2cx 
TRA S 2 D  

S2A C A V  30 
__ __ _TEA-- -._S2E____-- - _.____ .- -- _- - - 
STXCAL CAD OELRAO 

__ PPY - - - _ B f i P L - - -  __ ____ - -- 

TZ EFPR3 
CAD AP JOR 
SUB R A O F I N  

- T Z P  __- ~ EFPR3 _____ __ - - . 
C A C  DELRAD 

- A S C  APJOR 

d 
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* 

CAD 1. 
SUB F 2  

STR M 7  
LFR 2rRDMBSS 

LFR 3,RDMBSS+l 
LFR 4,RDMBSS+2 .- __ __ __ . - - - 

- _.__ __ - - __ - __ 

LFR 5 r RDMB S S+ 3 - _  
J L H  H ? + 1  E X I T .  

RDHBSS @ S S  4 
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ASSIGN SCALEtRPSZt32tQ4tQ6tQ9rQ12rXINP~XDINP~XINS~XDI~S~PSI 

A S S 1  GN AVRUC p RMRUC. AVGe RMGt  PHI  IN ,RAD1 Nt ROUT t RIN 

ASSIGN D E L R A D ~ R A D F I N ~ P H I N P I D E L P H I ~ E ~ C E N ~ X M A X ~ S E T U P  

ASSIGN X P E R H g X D P E R M ~ A M J O U T ~ A U J I N , E C O U T ~ E C I N ~ A M J O R  

ASS I GN . .  AVGR RHSR t 
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CH R 4 8 t - L 0 / / 7 H  X M A X  = F 1 0 * 2 / / 1 9 H  F I X E D  POINT NUHBERD5//2 

48,OH'NUHBER OF ORRITS ISDS/ / (?LH NUMBER OF S E C T O R S  - .  . _ _ _  _____ _____I_--__ - .. __ - __ .. CHR - - .  - __ 

. . . . . . .  - . .  - . . . . . . . . . . . .  . ..... - - ___ _. - . - .- .......... .- . 

5tIS05+ I__._ __ __ . C HR _ _  -. 
a s s t  GN- C ~ V A L  

. - ... .- .... - ............ __ - 

. -  - CTOFF DECQL ,COVALt l tOFFCT - -.___ 
OFFCT CHR 3905* 
CTOFFP DECQL tCOVALt1tOFFPCT 
OFFPCT CHR 2 4 1 / / 1 6 H  CUTOFF VALUE I S D S +  

SHOUT1 DECaL ,AVGRt69OUTSM1 ____ ____ ~ ___ - __ 
OUTS41 CHK- 4 8 t / / 1 7 H  AVERAGE RUCRIN = l P E l 4 . 6 , 1 5 H  RMS- RUC-R-Iq-=-- 

.- .... ..... . ..... __ ___ ......... .. ..... 

. . . . . . . . . . . . .  . . .  . .. ... .- . _-__ 

HEAD DECQL t t r D A E H  
DAEH CHR 

_ _  _-__ 
4 8 t l H  1 t X t 3 H M l L  t 11 X 6HRUCR I Nt 1 I XI 6 H L m E G i  10X F l H F ,  1 I 
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- ____ ~ - -  
- --~--'-7IHX---TOi-9 2 X 9 1 HQ/ / * 

___ I_____--- 

OUV--- 

TU0 CHR 46gD5rlP2El 7099F11~591P2E17099F11~591P2€1709903/+ 

S K I P  C E C O I ~  s r r P I K S  
P I K S  CHR 5,3(/)+ 

DE CJL-TW6-*3; C OUN T 9 9 * TU 0 
OECPL 3 r S E T U P t l r  

-_.I - -_- -. - _- *OuH L- essL--_-.-. 6 ____ 
r S N A R R Y  @ S S  9G 1 
E M I - 2  BSS . 6- - . . . _- ._ __ . -  - -.__ 

r C N A R R Y  R S S  9c 1 
*BUFF3 ESS 6 
+DNARRY ESS 9 C  1 
*B!EEF- E s s - __ _6-...---_ ___ __ __ - -- - - 
* S B Y C  ess  1702 
--A G4 EECQL-.-S!!i.AR R Y . 1 d Y r  5 _______ __ - - 

CECQ C N A R R Y t l t C N U t l  
CFCQ D N A R R Y .  1 . D N U r  

E L K A U X  C E C Q L  S k A R R Y + 8 9 4 t l r S N U t l  
__ CECQ CNARRY +894r 1 t C N U  p 1 __ - - . .  -__ 

CECQ D N A R R Y + 8 9 4 , l t O N U t  
B L K A U X  C a Q I  S N A R R Y - 6  r 1 9  S NU, 1 

CECQ C N A R R Y - 6 9 l t C N U t L  
__-_ - - - - - __ . - 

CFCQ D N A R R Y - 6 r l e O N U r  
I G N O R E  EQUS 4096 

R F A S T  EGbF 3 
-LOr,PS- mu&_... 1 ___ _. ._ 

- Q F A S T  E 4 U F  2 ___ - __.__ _. 

T B Y 4  C E C  1.5 
U c EC 1.85 407467730 13 72 
K 4  CEC 7.4 16298709205488 

_____ R I N C R  ____- C E C  _I_ __ _. ___ 5 5 555 5 565555 55E-03 
Q CEC .43213918263772E-01 
PSL __ __CEC oc37 __ - - . .. _ _  .-- - - 
P I  C E C  3.141592653589793 
FOC T rCTQL r 6 5 r 4 3  43.71 47 
HlOCT OCTQL rr7C3094701 

_- __ .. _ _  - _ _  - . - -_ 

& Z O C T  CCTOL 9 9  7 0 3_0 tk702 __ - 
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c 

PHIST CAD DELX SUBROUTIN TO CORRECT * P H I * .  

7 
TP PHISTA - 
T Z  PH I ST6 
C A D  1800 
PSC P k I  
T R A  P h I S T X  

TP PF I STX 
PHISTA CAD DELXD 

CAD 3 6 0 0  
P S C  Pt i  I 
T R A  w m r x  

PHISTB CAD OELXD 
TP PHISTC 
C A D  270. 
STR P h I  
TRA PHISTX 

PHISTC C A D  90 0 

STR PH I 
PHISTX JLH 3 , #  E X I T ,  
c x H a x  SFR 4tCBSS SAVE RETURN- 

CAM l rPXMAX 

CALL PRINT 
LFR 4rCBSS 
T R A  STXCAL 

PXMAX CECQL rX92tXMAXP 
XMAXP CHR 4 8 r l H 1 / / / 2 4 H  **** XHAX EXCEEDED * * *+ / /3H  XzlPE24.  

CHR 1 7 t / / 4 t l  XD=LPE24olS* 

*CRSS B S S  I 

* 
* 
* 

- GO 
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C. 

Input parameters 

NSTART: An integer  (1,2,3, or  4) representing the  quarter-period of p ( t )  

which i n i t i a t e s  the motion. 

The number of integer  multiples m of the bas ic  mapping period. 

The bas ic  mapping period no 

The numerical value of the  period T o f  p ( t ) .  

MLTPLSn 

PEW: 

VIMC; 

PZERQ: 

XMIU[r 

XPEBM: 

The numerical value of the magnitude p, of p ( t ) .  

The maximum value of X which a f i n a l  coordinate is allowed t o  a t t a i n ,  

The X-coordinate of the point t o  be used a s  the o r i g i n  of the polar 

coordinates. 

XDPEREas The X-coordinate of the point t o  be used as  the o r ig in  of the polar 

coordinates, 

The fixed eccent r ic i ty  e 

phase-space being mapped, 

The semi-major ax is  a. corresponding t o  the i n i t i a l  point i n  phase- 

space being mapped. 

The or ig ina l  angle eo corresponding t o  the i n i t i a l  point  i n  phase- 

space being mapped.. 

ECCEN: corresponding t o  the i n i t i a l  point i n  
0 

AMJQR: 

PHILN: 

PHIINCr  An increment i n  eo i f  a regular series of 8 values is desired.  

PHIFIN: The f i n a l  eo i n  the desired series of eo values (may equal PHIIN). 

0 

Output parameters 

NCYGLES:: The running counter for  the number of multiples m of the bas ic  

period no 

The running value of t i m e  t 1" V ( 1 ) :  
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V (2): 

V ( 3 ) :  

RAD: 

P H I  : 

RUERIN: 

The mapped X-coordinate X1 (t1)- 

The mapped k-coordinate k (t ). 

The mapped radius rl about (XPERM, XDPEBM). 

The mapped angle 8 about (XPERM, XDPERM). 

The r a t i o  of the  mapped radius r1 a t  the angle 8 

r 

same angle 

Moser's A6 function = (81-80). 

Moser's AK function = (rl-ro). 

1 1  

1 
t o  the radius 1 

of a standard ell ipse (specified by AMJOR and ECCEN) a t  the e 
[This is called RUCRIN i n  the NICAP program.] 

FMOSER: 

GMOSER: 
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